CATEGORIES OF DIMENSION ZERO

被引:2
作者
Wiltshire-Gordon, John D. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USA
关键词
Finite length category; representations of categories; homological modulus; REPRESENTATION-THEORY; FI-MODULES; STABILITY; HOMOLOGY;
D O I
10.1090/proc/14040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If D is a category and k is a commutative ring, the functors from D to Modk can be thought of as representations of D. By definition, D is dimension zero over k if its finitely generated representations have finite length. We characterize categories of dimension zero in terms of the existence of a "homological modulus" (Definition 1.4) which is combinatorial and linear-algebraic in nature.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1994, CAMBRIDGE STUDIES AD, DOI DOI 10.1017/CBO9781139644136
[2]  
Bouc Serge, 2015, ARXIV151003034
[3]   FI-MODULES AND STABILITY FOR REPRESENTATIONS OF SYMMETRIC GROUPS [J].
Church, Thomas ;
Ellenberg, Jordan S. ;
Farb, Benson .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (09) :1833-1910
[4]   FI-modules over Noetherian rings [J].
Church, Thomas ;
Ellenberg, Jordan S. ;
Farb, Benson ;
Nagpal, Rohit .
GEOMETRY & TOPOLOGY, 2014, 18 (05) :2951-2984
[5]   Representation theory and homological stability [J].
Church, Thomas ;
Farb, Benson .
ADVANCES IN MATHEMATICS, 2013, 245 :250-314
[6]   GROUP RING [J].
CONNELL, IG .
CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (04) :650-&
[7]   HOMOLOGY OF SYMMETRIC PRODUCTS AND OTHER FUNCTORS OF COMPLEXES [J].
DOLD, A .
ANNALS OF MATHEMATICS, 1958, 68 (01) :54-80
[8]  
Ellenberg J.S., 2015, ARXIV150802430
[9]  
Franjou Vincent, 2015, PROGR MATH, V311
[10]   New examples of dimension zero categories [J].
Gitlin, Andrew .
JOURNAL OF ALGEBRA, 2018, 505 :271-278