Toeplitz operators with locally integrable symbols on Bergman spaces of bounded simply connected domains

被引:6
作者
Mannersalo, Paula [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
关键词
Toeplitz operator; Bergman space; boundedness; compactness; simply connected domain; locally integrable symbol; Whitney decomposition; COMPACT-OPERATORS;
D O I
10.1080/17476933.2015.1120293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundedness and compactness of generalized Toeplitz operators with locally integrable symbols on Bergman spaces A(p)(Omega), 1 < p < infinity, where Omega subset of C is a bounded simply connected domain with C-4 smooth boundary. We give sufficient conditions for boundedness and compactness of T-a,T-Omega in terms of "averages" of symbol a over certain Cartesian squares. The main tool in the proof is the Whitney covering: Omega is decomposed into union of countably many squares whose side lengths are comparable to the boundary distance. If a is nonnegative, we show that the given conditions are also necessary.
引用
收藏
页码:854 / 874
页数:21
相关论文
共 24 条
[1]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 2007, OPERATOR THEORY FUNC
[3]  
Axler S, 1998, INDIANA U MATH J, V47, P387
[4]  
Duren P.L., 2004, BERGMAN SPACES, V100
[5]   Compact Toeplitz operators via the Berezin transform on bounded symmetric domains [J].
Englis, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 33 (04) :426-455
[6]  
Grudsky S, 2003, J OPERAT THEOR, V49, P325
[7]   Bergman-Toeplitz operators: Radial component influence [J].
Grudsky, S ;
Vasilevski, N .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 40 (01) :16-33
[8]  
He Z, 2013, INT J MATH ANAL, V7, P291
[9]   The dual of a Bergman space on simply connected domains [J].
Hedenmalm, H .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1) :311-335
[10]  
Korenblum Boris, 1995, J. Operator Theory, V33, P353