The Anode Challenge for Lithium-Ion Batteries: A Mechanochemically Synthesized Sn-Fe-C Composite Anode Surpasses Graphitic Carbon

被引:33
作者
Dong, Zhixin [1 ]
Zhang, Ruibo [1 ]
Ji, Dongsheng [2 ]
Chernova, Natasha A. [1 ]
Karki, Khim [1 ,3 ]
Sallis, Shawn [1 ]
Piper, Louis [1 ]
Whittingham, M. Stanley [1 ,2 ]
机构
[1] SUNY Binghamton, Mat Sci & Engn, Binghamton, NY 13902 USA
[2] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
anode; high energy ball mill; lithium-ion battery; Sn2Fe; volumetric capacity; ALLOYED SN-FE(-C) POWDERS; ELECTROCHEMICAL REACTION; IN-SITU; LI; TIN; PERFORMANCE; ELECTRODE; NANOMATERIALS; NANOSPHERES; SIZE;
D O I
10.1002/advs.201500229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn-Fe-C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g(-1) and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantly exceeds that of carbon. It also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc(-1) over 140 cycles at the 1 C rate.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[2]   One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties [J].
Chen, Jun Song ;
Li, Chang Ming ;
Zhou, Wen Wen ;
Yan, Qing Yu ;
Archer, Lynden A. ;
Lou, Xiong Wen .
NANOSCALE, 2009, 1 (02) :280-285
[3]  
Courtel F., 2013, NANOTECHNOLOGY LITHI, P67
[4]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[5]   Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons [J].
Disma, F ;
Aymard, L ;
Dupont, L ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3959-3972
[6]   Characterization of amorphous and crystalline tin-cobalt anodes [J].
Fan, Quan ;
Chupas, Peter J. ;
Whittingham, M. Stanley .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (12) :A274-A278
[7]   An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn30Co30C40 [J].
Ferguson, P. P. ;
Dunlap, R. A. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) :A326-A332
[8]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[9]   Critical size of a nano SnO2 electrode for Li-secondary battery [J].
Kim, C ;
Noh, M ;
Choi, M ;
Cho, J ;
Park, B .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3297-3301
[10]   Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries [J].
Kubiak, P. ;
Pfanzelt, M. ;
Geserick, J. ;
Hoermann, U. ;
Huesing, N. ;
Kaiser, U. ;
Wohlfahrt-Mehrens, M. .
JOURNAL OF POWER SOURCES, 2009, 194 (02) :1099-1104