Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network

被引:188
作者
Tan, Jen Hong [1 ]
Fujita, Hamido [2 ]
Sivaprasad, Sobha [3 ]
Bhandary, Sulatha V. [4 ]
Rao, A. Krishna [4 ]
Chua, Kuang Chua [1 ]
Acharya, U. Rajendra [1 ,5 ,6 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[2] Iwate Prefectural Univ, Fac Software & Informat Sci, Takizawa, Iwate 0200693, Japan
[3] NIHR Moorfields Biomed Res Ctr, London, England
[4] Kasturba Med Coll & Hosp, Dept Ophthalmol, Manipal 576104, Karnataka, India
[5] SIM Univ, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[6] Univ Malaya, Dept Biomed Engn, Fac Engn, Kuala Lumpur, Malaysia
关键词
Exudates; Microaneurysms; Haemorrhages; Convolutional neural network; Fundus image; Segmentation; Diabetic retinopathy; COLOR FUNDUS IMAGES; DIABETIC-RETINOPATHY; RED LESIONS;
D O I
10.1016/j.ins.2017.08.050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Screening for vision threatening diabetic retinopathy by grading digital retinal images reduces the risk of blindness in people with diabetes. Computer-aided diagnosis can aid human graders to cope with this mounting problem. We propose to use a 10-layer convolutional neural network to automatically, simultaneously segment and discriminate exudates, haemorrhages and micro-aneurysms. Input image is normalized before segmentation. The net is trained in two stages to improve performance. On average, our net on 30,275,903 effective points achieved a sensitivity of 0.8758 and 0.7158 for exudates and dark lesions on the CLEOPATRA database. It also achieved a sensitivity of 0.6257 and 0.4606 for haemorrhages and micro-aneurysms. This study shows that it is possible to get a single convolutional neural network to segment these pathological features on a wide range of fundus images with reasonable accuracy. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 76
页数:11
相关论文
共 37 条
[1]  
[Anonymous], 2005, The reproduction of colour
[2]  
[Anonymous], IMAGE ANAL
[3]  
[Anonymous], 11 C MED IM UND AN
[4]  
[Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
[5]  
[Anonymous], REGULARIZATION NEURA
[6]   Improving microaneurysm detection in color fundus images by using context-aware approaches [J].
Antal, Balint ;
Hajdu, Andras .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2013, 37 (5-6) :403-408
[7]   A Study on Hemorrhage Detection Using Hybrid Method in Fundus Images [J].
Bae, Jang Pyo ;
Kim, Kwang Gi ;
Kang, Ho Chul ;
Jeong, Chang Bu ;
Park, Kyu Hyung ;
Hwang, Jeong-Min .
JOURNAL OF DIGITAL IMAGING, 2011, 24 (03) :394-404
[8]  
Bhaskaranand Malavika, 2016, J Diabetes Sci Technol, V10, P254, DOI 10.1177/1932296816628546
[9]   Diabetic retinopathy [J].
Cheung, Ning ;
Mitchell, Paul ;
Wong, Tien Yin .
LANCET, 2010, 376 (9735) :124-136
[10]   Automated microaneurysm detection using local contrast normalization and local vessel detection [J].
Fleming, Alan D. ;
Philip, Sam ;
Goatman, Keith A. ;
Olson, John A. ;
Sharp, Peter F. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (09) :1223-1232