Minimizing Cholesterol-Induced Aggregation of Membrane-Interacting DNA Origami Nanostructures

被引:10
作者
Daljit Singh, Jasleen Kaur [1 ,2 ,3 ]
Luu, Minh Tri [1 ,2 ,3 ]
Berengut, Jonathan F. [1 ,3 ]
Abbas, Ali [2 ,3 ]
Baker, Matthew A. B. [4 ,5 ]
Wickham, Shelley F. J. [1 ,3 ,6 ]
机构
[1] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] Univ Sydney, Nano Inst, Sydney, NSW 2006, Australia
[4] Univ New South Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia
[5] CSIRO Synthet Biol Future Sci Platform, GPO Box 2583, Brisbane, Qld 4001, Australia
[6] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
DNA origami; DNA nanotechnology; cholesterol; aggregation; LIPOSOMES; TRANSPORT; SHAPES; CARGO;
D O I
10.3390/membranes11120950
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA nanotechnology provides methods for building custom membrane-interacting nanostructures with diverse functions, such as shaping membranes, tethering defined numbers of membrane proteins, and transmembrane nanopores. The modification of DNA nanostructures with hydrophobic groups, such as cholesterol, is required to facilitate membrane interactions. However, cholesterol-induced aggregation of DNA origami nanostructures remains a challenge. Aggregation can result in reduced assembly yield, defective structures, and the inhibition of membrane interaction. Here, we quantify the assembly yield of two cholesterol-modified DNA origami nanostructures: a 2D DNA origami tile (DOT) and a 3D DNA origami barrel (DOB), by gel electrophoresis. We found that the DOT assembly yield (relative to the no cholesterol control) could be maximised by reducing the number of cholesterols from 6 to 1 (2 +/- 0.2% to 100 +/- 2%), optimising the separation between adjacent cholesterols (64 +/- 26% to 78 +/- 30%), decreasing spacer length (38 +/- 20% to 95 +/- 5%), and using protective ssDNA 10T overhangs (38 +/- 20% to 87 +/- 6%). Two-step folding protocols for the DOB, where cholesterol strands are added in a second step, did not improve the yield. Detergent improved the yield of distal cholesterol configurations (26 +/- 22% to 92 +/- 12%), but samples re-aggregated after detergent removal (74 +/- 3%). Finally, we confirmed functional membrane binding of the cholesterol-modified nanostructures. These findings provide fundamental guidelines to reducing the cholesterol-induced aggregation of membrane-interacting 2D and 3D DNA origami nanostructures, improving the yield of well-formed structures to facilitate future applications in nanomedicine and biophysics.
引用
收藏
页数:17
相关论文
共 54 条
[1]  
Akbari E, 2019, FASEB J, V33
[2]   Engineering Cell Surface Function with DNA Origami [J].
Akbari, Ehsan ;
Mollica, Molly Y. ;
Lucas, Christopher R. ;
Bushman, Sarah M. ;
Patton, Randy A. ;
Shahhosseini, Melika ;
Song, Jonathan W. ;
Castro, Carlos E. .
ADVANCED MATERIALS, 2017, 29 (46)
[3]   Dynamic Interactions between Lipid-Tethered DNA and Phospholipid Membranes [J].
Arnott, Patrick M. ;
Joshi, Himanshu ;
Aksimentiev, Aleksei ;
Howorka, Stefan .
LANGMUIR, 2018, 34 (49) :15084-15092
[4]   Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering [J].
Baker, Matthew A. B. ;
Tuckwell, Andrew J. ;
Berengut, Jonathan F. ;
Bath, Jonathan ;
Benn, Florence ;
Duff, Anthony P. ;
Whitten, Andrew E. ;
Dunn, Katherine E. ;
Hynson, Robert M. ;
Turberfield, Andrew J. ;
Lee, Lawrence K. .
ACS NANO, 2018, 12 (06) :5791-5799
[5]   Modulation of Density and Orientation of Amphiphilic DNA on Phospholipid Membranes. II. Vesicles [J].
Banchelli, Martina ;
Gambinossi, Filippo ;
Durand, Adeline ;
Caminati, Gabriella ;
Brown, Tom ;
Berti, Debora ;
Baglioni, Piero .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (21) :7348-7358
[6]   Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape [J].
Bastings, Maartje M. C. ;
Anastassacos, Frances M. ;
Ponnuswamy, Nandhini ;
Leifer, Franziska G. ;
Cuneo, Garry ;
Lin, Chenxiang ;
Ingber, Donald E. ;
Ryu, Ju Hee ;
Shih, William M. .
NANO LETTERS, 2018, 18 (06) :3557-3564
[7]   Recovery of intact DNA nanostructures after agarose gel-based separation [J].
Bellot, Gaetan ;
McClintock, Mark A. ;
Lin, Chenxiang ;
Shih, William M. .
NATURE METHODS, 2011, 8 (03) :192-194
[8]   Lipid Membranes Carrying Lipophilic Cholesterol-Based Oligonucleotides-Characterization and Application on Layer-by-Layer Coated Particles [J].
Bunge, Andreas ;
Loew, Martin ;
Pescador, Paula ;
Arbuzova, Anna ;
Brodersen, Nicolai ;
Kang, Jing ;
Daehne, Lars ;
Liebscher, Juergen ;
Herrmann, Andreas ;
Stengel, Gudrun ;
Huster, Daniel .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (51) :16425-16434
[9]   Structural and Functional Stability of DNA Nanopores in Biological Media [J].
Burns, Jonathan R. ;
Howorka, Stefan .
NANOMATERIALS, 2019, 9 (04)
[10]  
Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]