Impact of near-PT symmetry on exciting solitons and interactions based on a complex Ginzburg-Landau model

被引:23
作者
Chen, Yong [1 ]
Yan, Zhenya [2 ,3 ]
Liu, Wenjun [4 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, POB 91, Beijing 100876, Peoples R China
来源
OPTICS EXPRESS | 2018年 / 26卷 / 25期
基金
中国国家自然科学基金;
关键词
LOCALIZED MODES; OPTICAL MEDIA; SYMMETRY; DYNAMICS; FAMILIES; STATIONARY; EQUATIONS; REAL;
D O I
10.1364/OE.26.033022
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically report the influence of a class of near-parity-time-(PT-) symmetric potentials on solitons in the complex Ginzburg-Landau (CGL) equation. Although the linear spectral problem with the potentials does not admit entirely-real spectra due to the existence of spectral filtering parameter alpha(2) or nonlinear gain-loss coefficient beta(2), we do find stable exact solitons in the second quadrant of the (alpha(2),beta(2)) space including on the corresponding axes. Other fascinating properties associated with the solitons are also examined, such as the interactions and energy flux. Moreover, we study the excitations of nonlinear modes by considering adiabatic changes of parameters in a generalized CGL model. These results are useful for the related experimental designs and applications. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:33022 / 33034
页数:13
相关论文
共 86 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]   Dark solitons and vortices in PT-symmetric nonlinear media: From spontaneous symmetry breaking to nonlinear PT phase transitions [J].
Achilleos, V. ;
Kevrekidis, P. G. ;
Frantzeskakis, D. J. ;
Carretero-Gonzalez, R. .
PHYSICAL REVIEW A, 2012, 86 (01)
[3]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[4]   NOVEL ARBITRARY-AMPLITUDE SOLITON-SOLUTIONS OF THE CUBIC-QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
AKHMEDIEV, N ;
AFANASJEV, VV .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2320-2323
[5]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[6]   Exploding solitons and Shil'nikov's theorem [J].
Akhmediev, N ;
Soto-Crespo, JM .
PHYSICS LETTERS A, 2003, 317 (3-4) :287-292
[7]   Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes [J].
Akhmediev, Nail ;
Soto-Crespo, J. M. ;
Grelu, Philippe .
CHAOS, 2007, 17 (03)
[8]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[9]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[10]  
[Anonymous], 2005, LECT NOTES PHYS, DOI DOI 10.1007/B11728