Blocking sets of nonsecant lines to a conic in PG(2,q), q odd

被引:10
作者
Aguglia, A
Korchmáros, G
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
blocking set; conic in PG(2.q); Baer subplane; 51E21;
D O I
10.1002/jcd.20042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [1], all point sets of minimum size in PG(2,q), blocking all external lines to a given irreducible conic C, have been determined for every odd q. Here we obtain a similar classification for those point sets of minimum size, which meet every external and tangent line to C. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:292 / 301
页数:10
相关论文
共 38 条
  • [21] Small blocking sets in PG(2, p3)
    Polverino, O
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 20 (03) : 319 - 324
  • [22] Ruled cubic surfaces in PG(4,q), Baer subplanes of PG(2, q2) and Hermitian curves
    Casse, R
    Quinn, CT
    DISCRETE MATHEMATICS, 2002, 248 (1-3) : 17 - 25
  • [23] Small Blocking Sets in PG(2, p3)
    Olga Polverino
    Designs, Codes and Cryptography, 2000, 20 : 319 - 324
  • [24] Classification of minimal blocking sets in PG(2,9)
    Botteldoorn, Arne
    Coolsaet, Kris
    Fack, Veerle
    JOURNAL OF GEOMETRY, 2024, 115 (01)
  • [25] Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points
    Harrach, Nora V.
    Metsch, Klaus
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 235 - 248
  • [26] Small point sets of PG(n, q3) intersecting each k-subspace in 1 mod q points
    Nóra V. Harrach
    Klaus Metsch
    Designs, Codes and Cryptography, 2010, 56 : 235 - 248
  • [27] Minimal Blocking Sets in PG(2, 8) and Maximal Partial Spreads in PG(3, 8)
    J. Barát
    A. Del Fra
    S. Innamorati
    L. Storme
    Designs, Codes and Cryptography, 2004, 31 : 15 - 26
  • [28] A small complete arc in PG(2,q), q=p2, p3 (mod 4)
    Giulietti, M
    Ughi, E
    DISCRETE MATHEMATICS, 1999, 208 : 311 - 318
  • [29] On the maximum size of some (k, r)-arcs in PG(2, q)
    Daskalov, Rumen
    DISCRETE MATHEMATICS, 2008, 308 (04) : 565 - 570
  • [30] Blocking all generators of Q+(2n+1,3), n≥4
    De Beule, J
    Storme, L
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (03) : 323 - 333