Blocking sets of nonsecant lines to a conic in PG(2,q), q odd

被引:10
作者
Aguglia, A
Korchmáros, G
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
关键词
blocking set; conic in PG(2.q); Baer subplane; 51E21;
D O I
10.1002/jcd.20042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [1], all point sets of minimum size in PG(2,q), blocking all external lines to a given irreducible conic C, have been determined for every odd q. Here we obtain a similar classification for those point sets of minimum size, which meet every external and tangent line to C. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:292 / 301
页数:10
相关论文
共 14 条
[1]   Blocking sets of external lines to a conic in PG(2,q), q ODD [J].
Aguglia, Angela ;
Korchmaros, Gabor .
COMBINATORICA, 2006, 26 (04) :379-394
[2]   MAXIMAL INTERSECTING FAMILIES AND AFFINE REGULAR POLYGONS IN PG(2, Q) [J].
BOROS, E ;
FUREDI, Z ;
KAHN, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 52 (01) :1-9
[3]  
ERDOS P, 1975, SERIES C MATH SOC, V10, P609
[4]  
Hughes D. R., 1982, PROJECTIVE PLANES
[5]  
Huppert B., 1967, Endliche Gruppen I, VI
[6]  
Korchmaros G., 1980, GEOMETRIAE DEDICATA, V9, P381, DOI [10.1007/BF00181181, DOI 10.1007/BF00181181]
[7]  
Mazzocca F., 1991, MITT MATH SEM GIESSE, V201, P109
[8]  
Segre B., 1977, ATTI ACCAD NAZ SFMN, V62, P613
[9]  
SEIDENBERG A, 1969, ELEMENTS THEORY ALGE
[10]  
SZONYI T, 1988, P JPN ACAD A-MATH, V64, P286