FOREST MONITORING IN GUATEMALA USING SATELLITE IMAGERY AND DEEP LEARNING

被引:0
|
作者
Wyniawskyj, Nina Sofia [1 ]
Napiorkowska, Milena [1 ]
Petit, David [1 ]
Podder, Pritimoy [1 ]
Marti, Paula [1 ]
机构
[1] Deimos Space UK Ltd, Harwell, Berks, England
关键词
deforestation; change detection; machine learning; remote sensing; Guatemala; convolutional neural network; DEFORESTATION;
D O I
10.1109/igarss.2019.8899782
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Forests cover 34% of Guatemala. The Guatemalan government have taken proficient actions in past decades to reduce deforestation and are looking toward new space technologies to improve forestry monitoring. This paper demonstrates the ability to automatically detect pixel-level changes in satellite images of forested areas that can be used to assist Guatemalan agencies, using satellite imagery from the Copernicus program and specially-developed deep learning algorithms for image segmentation.
引用
收藏
页码:6598 / 6601
页数:4
相关论文
共 50 条
  • [1] DEEP LEARNING DRIVEN REAL-TIME AIRSPACE MONITORING USING SATELLITE IMAGERY
    Singh, Anirudh
    Kumar, Satyam
    Choudhury, Deepjyoti
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (06): : 5672 - 5687
  • [2] MONITORING URBAN FOREST CANOPY COVER USING SATELLITE IMAGERY
    NEWMAN, AP
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 1993, 26 (2-3) : 175 - 176
  • [3] Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery
    Blaga, Lucian
    Ilies, Dorina Camelia
    Wendt, Jan A.
    Rus, Ioan
    Zhu, Kai
    David, Lorant Denes
    REMOTE SENSING, 2023, 15 (12)
  • [4] Monitoring Ethiopian Wheat Fungus with Satellite Imagery and Deep Feature Learning
    Pryzant, Reid
    Ermon, Stefano
    Lobell, David
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1524 - 1532
  • [5] DEEP LEARNING FOR THE DETECTION OF EARLY SIGNS FOR FOREST DAMAGE BASED ON SATELLITE IMAGERY
    Wittich, Dennis
    Rottensteiner, Franz
    Voelsen, Mirjana
    Heipke, Christian
    Mueller, Soenke
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 307 - 315
  • [6] Monitoring vegetation regeneration after forest fires using satellite imagery
    Twele, A
    Barbosa, P
    NEW STRATEGIES FOR EUROPEAN REMOTE SENSING, 2005, : 41 - 49
  • [7] MAPPING SLUMS FROM SATELLITE IMAGERY USING DEEP LEARNING
    Raj, Anjali
    Agrawal, Shubham
    Mitra, Adway
    Sinha, Manjira
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6584 - 6587
  • [8] Satellite Imagery Classification Using Shallow and Deep Learning Approaches
    Sainos-Vizuett, Michelle
    Hussein Lopez-Nava, Irvin
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 163 - 172
  • [9] A deep learning approach to ship detection using satellite imagery
    Stofa, Marzuraikah Mohd
    Zulkifley, Mohd Asyraf
    Zaki, Siti Zulaikha Muhammad
    10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540
  • [10] Deep Learning for Pavement Condition Evaluation Using Satellite Imagery
    Lebaku, Prathyush Kumar Reddy
    Gao, Lu
    Lu, Pan
    Sun, Jingran
    INFRASTRUCTURES, 2024, 9 (09)