Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions

被引:105
作者
Qu, Xiangmeng [1 ]
Wang, Shaopeng [2 ,3 ]
Ge, Zhilei [2 ,3 ]
Wang, Jianbang [2 ,3 ]
Yao, Guangbao [2 ,3 ]
Li, Jiang [2 ,3 ]
Zuo, Xiaolei [2 ,3 ]
Shi, Jiye [4 ]
Song, Shiping [2 ,3 ]
Wang, Lihua [2 ,3 ]
Li, Li [1 ]
Pei, Hao [1 ]
Fan, Chunhai [2 ,3 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Green Chem & Chem Proc, Sch Chem & Mol Engn, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Div Phys Biol, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Bioimaging Ctr, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
[4] Univ Oxford, Kellogg Coll, Oxford OX2 6PN, England
基金
中国博士后科学基金;
关键词
STRAND DISPLACEMENT CASCADES; DNA NANOSTRUCTURES; COMPUTATION; MICROENVIRONMENTS; AMPLIFICATION; MONOLAYERS; DELIVERY; ROBOTS; ARRAY; ECM;
D O I
10.1021/jacs.7b04040
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion: We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND OR). This study provides a highly generic tool for self organization of biological systems.
引用
收藏
页码:10176 / 10179
页数:4
相关论文
共 43 条
  • [1] Probing the role of multicellular organization in three-dimensional microenvironments
    Albrecht, DR
    Underhill, GH
    Wassermann, TB
    Sah, RL
    Bhatia, SN
    [J]. NATURE METHODS, 2006, 3 (05) : 369 - 375
  • [2] Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/NNANO.2014.58, 10.1038/nnano.2014.58]
  • [3] Synthetic biology: new engineering rules for an emerging discipline
    Andrianantoandro, Ernesto
    Basu, Subhayu
    Karig, David K.
    Weiss, Ron
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) : 2006.0028
  • [4] Programmable single-cell mammalian biocomputers
    Auslaender, Simon
    Auslaender, David
    Mueller, Marius
    Wieland, Markus
    Fussenegger, Martin
    [J]. NATURE, 2012, 487 (7405) : 123 - +
  • [5] A synthetic multicellular system for programmed pattern formation
    Basu, S
    Gerchman, Y
    Collins, CH
    Arnold, FH
    Weiss, R
    [J]. NATURE, 2005, 434 (7037) : 1130 - 1134
  • [6] An autonomous molecular computer for logical control of gene expression
    Benenson, Y
    Gil, B
    Ben-Dor, U
    Adar, R
    Shapiro, E
    [J]. NATURE, 2004, 429 (6990) : 423 - 429
  • [7] Principles of nanoparticle design for overcoming biological barriers to drug delivery
    Blanco, Elvin
    Shen, Haifa
    Ferrari, Mauro
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (09) : 941 - 951
  • [8] Amplifying Genetic Logic Gates
    Bonnet, Jerome
    Yin, Peter
    Ortiz, Monica E.
    Subsoontorn, Pakpoom
    Endy, Drew
    [J]. SCIENCE, 2013, 340 (6132) : 599 - 603
  • [9] Nanopatterned Extracellular Matrices Enable Cell-Based Assays with a Mass Spectrometric Readout
    Cabezas, Maria D.
    Mirkin, Chad A.
    Mrksich, Milan
    [J]. NANO LETTERS, 2017, 17 (03) : 1373 - 1377
  • [10] Chen SX, 2013, NAT CHEM, V5, P782, DOI [10.1038/nchem.1713, 10.1038/NCHEM.1713]