Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries

被引:74
作者
Chen, Chen [1 ]
Fu, Kun [1 ]
Lu, Yao [1 ]
Zhu, Jiadeng [1 ]
Xue, Leigang [2 ]
Hu, Yi [1 ]
Zhang, Xiangwu [1 ]
机构
[1] N Carolina State Univ, Raleigh, NC 27695 USA
[2] Arizona State Univ, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
HOLLOW CARBON; HIGH-CAPACITY; LITHIUM; STORAGE; PERFORMANCE; CAPABILITY; CHALLENGES; ELECTRODE; FIBERS;
D O I
10.1039/c5ra01729g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion battery is currently the dominant energy storage technology for electronic devices and electric vehicles. However, the predictable rising cost of lithium raw materials has attracted increasing interest in less expensive rivals, such as sodium-ion battery. In this work, a tin antimony (SnSb) alloy-filled porous carbon nanofiber composite was prepared as a sodium-ion battery anode material by a simple electrospinning method with subsequent thermal treatment. The spinning solution contained antimony tin oxide nanoparticles as the SnSb alloy precursor, polyacrylonitrile as the carbon precursor, and polymethyl methacrylate (PMMA) as the pore generator. The resultant SnSb@C nanofiber composite formed a continuous conductive network, which was favorable for enhancing its electrochemical performance. The presence of the SnSb alloy significantly increased the energy storage capacity of the composite due to its high theoretical capacity. The porous structure created by the decomposition of the PMMA polymer provided a free space to buffer the volume change of the SnSb alloy during the sodiation-desodiation process. The resultant SnSb@C nanofiber composite exhibited high capacity and a stable rate capability, and it was demonstrated to be a promising anode candidate for sodium-ion batteries.
引用
收藏
页码:30793 / 30800
页数:8
相关论文
共 26 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[3]   Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries [J].
Fu, Kun ;
Xue, Leigang ;
Yildiz, Ozkan ;
Li, Shuli ;
Lee, Hun ;
Li, Ying ;
Xu, Guanjie ;
Zhou, Lan ;
Bradford, Philip D. ;
Zhang, Xiangwu .
NANO ENERGY, 2013, 2 (05) :976-986
[4]   Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance [J].
Fu, Lijun ;
Tang, Kun ;
Song, Kepeng ;
van Aken, Peter A. ;
Yu, Yan ;
Maier, Joachim .
NANOSCALE, 2014, 6 (03) :1384-1389
[5]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[6]   Enabling Sodium Batteries Using Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes [J].
Kim, Donghan ;
Kang, Sun-Ho ;
Slater, Michael ;
Rood, Shawn ;
Vaughey, John T. ;
Karan, Naba ;
Balasubramanian, Mahalingam ;
Johnson, Christopher S. .
ADVANCED ENERGY MATERIALS, 2011, 1 (03) :333-336
[7]   Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery [J].
Kim, Heejin ;
Kim, Dong Jun ;
Seo, Dong-Hwa ;
Yeom, Min Sun ;
Kang, Kisuk ;
Kim, Do Kyung ;
Jung, Yousung .
CHEMISTRY OF MATERIALS, 2012, 24 (06) :1205-1211
[8]   Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Ma, Xiaohua ;
Ceder, Gerbrand ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :710-721
[9]   Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries [J].
Lee, KT ;
Jung, YS ;
Oh, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (19) :5652-5653
[10]   Sn-Cu Nanocomposite Anodes for Rechargeable Sodium-Ion Batteries [J].
Lin, Yong-Mao ;
Abel, Paul R. ;
Gupta, Asha ;
Goodenough, John B. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (17) :8273-8277