A SPECTRAL METHOD FOR THE EIGENVALUE PROBLEM FOR ELLIPTIC EQUATIONS

被引:0
作者
Atkinson, Kendall [1 ,2 ]
Hansen, Olaf [3 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
[3] Calif State Univ San Marcos, Dept Math, San Marcos, CA 92096 USA
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2010年 / 37卷
关键词
elliptic equations; eigenvalue problem; spectral method; multivariable approximation; NUMERICAL-SOLUTION; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open, simply connected, and bounded region in R-d, d >= 2, and assume its boundary partial derivative Omega is smooth. Consider solving the eigenvalue problem Lu = lambda u for an elliptic partial differential operator L over Omega with zero values for either Dirichlet or Neumann boundary conditions. We propose, analyze, and illustrate a 'spectral method' for solving numerically such an eigenvalue problem. This is an extension of the methods presented earlier by Atkinson, Chien, and Hansen [Adv. Comput. Math, 33 (2010), pp. 169-189, and to appear].
引用
收藏
页码:386 / 412
页数:27
相关论文
共 30 条
[11]  
Atkinson KE., 1996, Cambridge Monographs on Applied and Computational Mathematics
[12]   A spectral method for elliptic equations: the Neumann problem [J].
Atkinson, Kendall ;
Hansen, Olaf ;
Chien, David .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) :295-317
[13]   A spectral method for elliptic equations: the Dirichlet problem [J].
Atkinson, Kendall ;
Chien, David ;
Hansen, Olaf .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) :169-189
[14]   Multivariate simultaneous approximation [J].
Bagby, T ;
Bos, L ;
Levenberg, N .
CONSTRUCTIVE APPROXIMATION, 2002, 18 (04) :569-577
[15]  
Boyd JP, 2000, CHEBYSHEV FOURIER SP
[16]  
Canuto C., 2012, Spectral Methods in Fluid Dynamics
[17]  
CHATELIN F, 1983, Spectral Approximations of Linear Operators
[18]  
Dunkl C. F., 2014, Encyclopedia of Mathematics and its Applications, V2
[19]  
Gottlieb D., 1977, Numerical Analysis of Spectral Methods: Theory and Applications, DOI DOI 10.1137/1.9781611970425
[20]   On the norm of the hyperinterpolation operator on the unit disc and its use for the solution of the nonlinear Poisson equation [J].
Hansen, Olaf ;
Atkinson, Kendall ;
Chien, David .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (02) :257-283