A SPECTRAL METHOD FOR THE EIGENVALUE PROBLEM FOR ELLIPTIC EQUATIONS

被引:0
作者
Atkinson, Kendall [1 ,2 ]
Hansen, Olaf [3 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
[3] Calif State Univ San Marcos, Dept Math, San Marcos, CA 92096 USA
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2010年 / 37卷
关键词
elliptic equations; eigenvalue problem; spectral method; multivariable approximation; NUMERICAL-SOLUTION; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open, simply connected, and bounded region in R-d, d >= 2, and assume its boundary partial derivative Omega is smooth. Consider solving the eigenvalue problem Lu = lambda u for an elliptic partial differential operator L over Omega with zero values for either Dirichlet or Neumann boundary conditions. We propose, analyze, and illustrate a 'spectral method' for solving numerically such an eigenvalue problem. This is an extension of the methods presented earlier by Atkinson, Chien, and Hansen [Adv. Comput. Math, 33 (2010), pp. 169-189, and to appear].
引用
收藏
页码:386 / 412
页数:27
相关论文
共 30 条
[1]  
[Anonymous], 1971, Approximate Calculation of Multiple Integrals
[2]  
[Anonymous], 2004, ORTHOGONAL POLYNOMIA, DOI DOI 10.1093/OSO/9780198506720.001.0001, Patent No. 220512815
[3]  
[Anonymous], HIGHER ANAL
[4]  
[Anonymous], HDB MATH FUNCTIONS
[5]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[6]  
[Anonymous], SPECTRAL METHODS FU
[7]  
Atkinson K, 2004, ELECTRON T NUMER ANA, V17, P206
[8]   CONVERGENCE RATES FOR APPROXIMATE EIGENVALUES OF COMPACT INTEGRAL-OPERATORS [J].
ATKINSON, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (02) :213-222
[9]  
Atkinson K, 2009, Theoretical Numerical Analysis: A Functional Analysis Framework, V3rd