A novel intumescent flame retardant with nanocellulose as charring agent and its flame retardancy in polyurethane foam

被引:22
作者
Luo, Fubin [1 ,2 ]
Wu, Kun [1 ]
Li, Dengfeng [1 ,2 ]
Zheng, Jian [1 ,2 ,3 ]
Guo, Huilong [1 ,2 ,3 ]
Zhao, Qiang [1 ,2 ]
Lu, Mangeng [1 ]
机构
[1] Chinese Acad Sci, Key Lab Cellulose & Lignocellulos Chem, Guangzhou 510650, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Chinese Acad Sci, Guangzhou Inst Chem, Guangzhou Green Bldg Mat Acad, Guangzhou 510650, Guangdong, Peoples R China
关键词
AMMONIUM POLYPHOSPHATE; CELLULOSE NANOWHISKERS; THERMAL-DEGRADATION; COMPOSITES; FLAMMABILITY; COMBUSTION; POLYMERS; RESIN;
D O I
10.1002/pc.23874
中图分类号
TB33 [复合材料];
学科分类号
摘要
Ammonium polyphosphate (APP) is microencapsulated with nanocellulose and dicyandiamide-formaldehyde using in situ polymerization and flocculation method. The presence of nanocellulose and dicyandiamide-formaldehyde significantly affects the thermal behavior and flame retardancy of microencapsulated ammonium polyphosphate (DFNAPP). DFNAPP is much more stable from 524 to 637 degrees C than that of APP because of the charred formation. Rigid polyurethane foam (PU) composites added DFNAPP obtain higher limiting oxygen index (LOI) values than that with the same loading of APP. Due to the presence of shell, experimental results indicate that DFNAPP obtains better compatibility and water resistance in PU matrix, resulting in the improved mechanical properties of the PU composites and the water durability. LOI value of PU/APP composite added 16.7 wt% additives has a decrement of 3.0% after water treatment. By comparison, that of PU/DFNAPP composite with the same loading of DFNAPP is only 0.3%. Compression strength of PU composite is increased from 195 kPa to 213 kPa when the DFNAPP (16.7 wt%) additive substitutes for APP (16.7 wt%). POLYM. COMPOS., 38:2762-2770, 2017. (c) 2015 Society of Plastics Engineers
引用
收藏
页码:2762 / 2770
页数:9
相关论文
共 28 条
  • [1] Further study on the flammability of polyurea: the effect of intumescent coating and additive flame retardants
    Awad, Walid H.
    Wilkie, Charles A.
    [J]. POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (08) : 1297 - 1304
  • [2] Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose
    Capadona, Jeffrey R.
    Shanmuganathan, Kadhiravan
    Trittschuh, Stephanie
    Seidel, Scott
    Rowan, Stuart J.
    Weder, Christoph
    [J]. BIOMACROMOLECULES, 2009, 10 (04) : 712 - 716
  • [3] Analysis of thermal degradation of diacetylene-containing polyurethane copolymers
    Chuang, F. S.
    [J]. POLYMER DEGRADATION AND STABILITY, 2007, 92 (07) : 1393 - 1407
  • [4] desMesquita J. P., 2011, SOFT MATTER, V7, P4405
  • [5] Thermal degradation of polyurethane and polyurethane/expandable graphite coatings
    Duquesne, S
    Le Bras, M
    Bourbigot, S
    Delobel, R
    Camino, G
    Eling, B
    Lindsay, C
    Roels, T
    [J]. POLYMER DEGRADATION AND STABILITY, 2001, 74 (03) : 493 - 499
  • [6] Cellulose nanowhiskers: promising materials for advanced applications
    Eichhorn, Stephen J.
    [J]. SOFT MATTER, 2011, 7 (02) : 303 - 315
  • [7] Herzog K., 1991, CHEM MACROMOL SYMPOS, V52, P307
  • [8] Testing by Fourier transform infrared species variation during melamine-urea-formaldehyde resin preparation
    Kandelbauer, A.
    Despres, A.
    Pizzi, A.
    Taudes, I.
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 106 (04) : 2192 - 2197
  • [9] Lan S.H., 2014, APPL MECH MAT, P192
  • [10] Thermal decomposition, combustion and fire-retardancy of polyurethanes - a review of the recent literature
    Levchik, SV
    Weil, ED
    [J]. POLYMER INTERNATIONAL, 2004, 53 (11) : 1585 - 1610