ON m-σ-EMBEDDED SUBGROUPS OF FINITE GROUPS

被引:0
作者
Guo, J. [1 ]
Guo, W. [1 ]
Qiao, S. [2 ]
Zhang, C. [3 ]
机构
[1] Hainan Univ, Dept Math, Haikou 570228, Hainan, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Peoples R China
[3] China Univ Min & Technol, Dept Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
finite group; m-sigma-embedded subgroup; sigma-permutable subgroup; supersoluble group; PERMUTABLE SUBGROUPS;
D O I
10.1007/s10474-021-01176-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma = {sigma(i)vertical bar i is an element of I} be some partition of the set of all primes P and G be a finite group. A group is said to be sigma-primary if it is a finite sigma(i)-group for some i. A subgroup A of G is said to be sigma-subnormal in G if there is a subgroup chain A = A(0) <= A(1) <= . . . = A(t) = G such that either A(i-1) (sic) A(i) or A(i)/(A(i-1)) A(i) is sigma-primary for all i = 1, . . . , t. A subgroup S of G is m-sigma-permutable in G if S = < M, B > for some modular subgroup M and sigma-permutable subgroup B of G. We say that a subgroup H of G is m-sigma-embedded in G if there exist an m-sigma-permutable subgroup S and a sigma-subnormal subgroup T of G such that H-G = HT and H boolean AND T <= S <= H, where H-G = < H-x vertical bar x is an element of G > is the normal closure of H in G. In this paper, we study the properties of m-sigma-embedded subgroups and use them to determine the structure of finite groups. Some known results are generalized.
引用
收藏
页码:100 / 111
页数:12
相关论文
共 18 条
  • [1] ON A LATTICE CHARACTERISATION OF FINITE SOLUBLE PST-GROUPS
    Chi, Zhang
    Skiba, Alexander N.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (02) : 247 - 254
  • [2] On two sublattices of the subgroup lattice of a finite group
    Chi, Zhang
    Skiba, Alexander N.
    [J]. JOURNAL OF GROUP THEORY, 2019, 22 (06) : 1035 - 1047
  • [3] Doerk K., 1992, GRUYTER EXP MATH, V4
  • [4] Esteban-Romero R., 2010, PRODUCTS FINITE GROU
  • [5] Guo W., 2015, Structure Theory for Canonical Classes of Finite Groups
  • [6] Finite groups with given s-embedded and n-embedded subgroups
    Guo, Wenbin
    Skiba, Alexander N.
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (10) : 2843 - 2860
  • [7] Huppert B., 1967, GRUNDLEHREN MATH WIS, V134
  • [8] Knyagina B. N., 2011, Siberian Math. J, V522, P398
  • [9] Schmidt R., 1994, GRUYTER EXP MATH, V14
  • [10] On the XΦ-hypercentre of finite groups
    Shemetkov, L. A.
    Skiba, Alexander N.
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (06) : 2106 - 2117