Machine Learning Advances in Microbiology: A Review of Methods and Applications

被引:44
作者
Jiang, Yiru [1 ]
Luo, Jing [1 ]
Huang, Danqing [1 ]
Liu, Ya [1 ]
Li, Dan-dan [1 ]
机构
[1] Shandong Univ, Inst Microbial Technol, State Key Lab Microbial Technol, Qingdao, Peoples R China
基金
中国博士后科学基金;
关键词
microorganisms; machine learning; deep learning; prediction; classification; DIMENSIONALITY REDUCTION; EFFICIENT ALGORITHM; GUT MICROBIOME; CLASSIFICATION; PERSPECTIVES; NETWORKS; SCIENCE; TRENDS;
D O I
10.3389/fmicb.2022.925454
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microorganisms play an important role in natural material and elemental cycles. Many common and general biology research techniques rely on microorganisms. Machine learning has been gradually integrated with multiple fields of study. Machine learning, including deep learning, aims to use mathematical insights to optimize variational functions to aid microbiology using various types of available data to help humans organize and apply collective knowledge of various research objects in a systematic and scaled manner. Classification and prediction have become the main achievements in the development of microbial community research in the direction of computational biology. This review summarizes the application and development of machine learning and deep learning in the field of microbiology and shows and compares the advantages and disadvantages of different algorithm tools in four fields: microbiome and taxonomy, microbial ecology, pathogen and epidemiology, and drug discovery.
引用
收藏
页数:12
相关论文
共 112 条
[51]   MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities [J].
Kang, Dongwan D. ;
Froula, Jeff ;
Egan, Rob ;
Wang, Zhong .
PEERJ, 2015, 3
[52]  
KEERTHI SS, 1994, SADHANA-ACAD P ENG S, V19, P851, DOI 10.1007/BF02743935
[53]   VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences [J].
Kieft, Kristopher ;
Zhou, Zhichao ;
Anantharaman, Karthik .
MICROBIOME, 2020, 8 (01)
[54]   Supervised classification of human microbiota [J].
Knights, Dan ;
Costello, Elizabeth K. ;
Knight, Rob .
FEMS MICROBIOLOGY REVIEWS, 2011, 35 (02) :343-359
[55]   Reinforcement learning in robotics: A survey [J].
Kober, Jens ;
Bagnell, J. Andrew ;
Peters, Jan .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1238-1274
[56]   The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes [J].
Kostic, Aleksandar D. ;
Gevers, Dirk ;
Siljander, Heli ;
Vatanen, Tommi ;
Hyotylainen, Tuulia ;
Hamalainen, Anu-Maaria ;
Peet, Aleksandr ;
Tillmann, Vallo ;
Poho, Paivi ;
Mattila, Ismo ;
Lahdesmaki, Harri ;
Franzosa, Eric A. ;
Vaarala, Outi ;
de Goffau, Marcus ;
Harmsen, Hermie ;
Ilonen, Jorma ;
Virtanen, Suvi M. ;
Clish, Clary B. ;
Oresic, Matej ;
Huttenhower, Curtis ;
Knip, Mikael ;
Xavier, Ramnik J. .
CELL HOST & MICROBE, 2015, 17 (02) :260-273
[57]  
Kriegel H.-P., 1996, P KDD, P226, DOI DOI 10.5555/3001460.3001507
[58]   Backpropagation Applied to Handwritten Zip Code Recognition [J].
LeCun, Y. ;
Boser, B. ;
Denker, J. S. ;
Henderson, D. ;
Howard, R. E. ;
Hubbard, W. ;
Jackel, L. D. .
NEURAL COMPUTATION, 1989, 1 (04) :541-551
[59]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[60]  
Lederberg J, 2001, SCIENTIST, V15, P8