Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution

被引:28
作者
Garimella, Martand Mayukh [1 ]
Koppu, Sudheer [1 ]
Kadlaskar, Shantanu Shrikant [1 ]
Pillutla, Venkata [1 ]
Abhijeet [1 ]
Choi, Wonjae [1 ]
机构
[1] Univ Texas Dallas, Dept Mech Engn, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
Condensation; Water harvesting; Bi-philic surfaces; Hydrophobicity; Hydrophilicity; DROPWISE CONDENSATION; SOLID-SURFACES; LIQUID-DROPS; WATER; RETENTION; DYNAMICS;
D O I
10.1016/j.jcis.2017.06.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2 mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800 pm and 1 mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized for the drain of harvested water. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1065 / 1073
页数:9
相关论文
共 31 条
[1]   Coalescence of sessile drops [J].
Andrieu, C ;
Beysens, DA ;
Nikolayev, VS ;
Pomeau, Y .
JOURNAL OF FLUID MECHANICS, 2002, 453 :427-438
[2]   Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns [J].
Bai, Hao ;
Wang, Lin ;
Ju, Jie ;
Sun, Ruize ;
Zheng, Yongmei ;
Jiang, Lei .
ADVANCED MATERIALS, 2014, 26 (29) :5025-5030
[3]   Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)
[4]   Nanoporosity-driven superhydrophilicity:: A means to create multifunctional antifogging coatings [J].
Cebeci, FÇ ;
Wu, ZZ ;
Zhai, L ;
Cohen, RE ;
Rubner, MF .
LANGMUIR, 2006, 22 (06) :2856-2862
[5]   Enhancement of condensation heat transfer with patterned surfaces [J].
Chatterjee, Abhra ;
Derby, Melanie M. ;
Peles, Yoav ;
Jensen, Michael K. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 71 :675-681
[6]   Coalescence of drops near a hydrophilic boundary leads to long range directed motion [J].
Chaudhury, Manoj K. ;
Chakrabarti, Aditi ;
Tibrewal, Tapasya .
EXTREME MECHANICS LETTERS, 2014, 1 :104-113
[7]   Continuous directional water transport on the peristome surface of Nepenthes alata [J].
Chen, Huawei ;
Zhang, Pengfei ;
Zhang, Liwen ;
Iu, Hongliang L. ;
Jiang, Ying ;
Zhang, Deyuan ;
Han, Zhiwu ;
Jiang, Lei .
NATURE, 2016, 532 (7597) :85-+
[8]   How Coalescing Droplets Jump [J].
Enright, Ryan ;
Miljkovic, Nenad ;
Sprittles, James ;
Nolan, Kevin ;
Mitchell, Robert ;
Wang, Evelyn N. .
ACS NANO, 2014, 8 (10) :10352-10362
[9]   RETENTION OF LIQUID-DROPS BY SOLID-SURFACES [J].
EXTRAND, CW ;
GENT, AN .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1990, 138 (02) :431-442
[10]   STUDIES AT PHASE INTERFACES .1. SLIDING OF LIQUID DROPS ON SOLID SURFACES AND A THEORY FOR SPRAY RETENTION [J].
FURMIDGE, CG .
JOURNAL OF COLLOID SCIENCE, 1962, 17 (04) :309-&