A note on fractional linear pure birth and pure death processes in epidemic models

被引:9
作者
Garra, Roberto [1 ]
Polito, Federico [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
ETAS model; Fractional branching; Birth process; Death process; Mittag-Leffler functions; Wiener-Hopf integral;
D O I
10.1016/j.physa.2011.06.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note we highlight the role of fractional linear birth and linear death processes, recently studied in Orsingher et al. (2010) [5] and Orsingher and Polito (2010) [6], in relation to epidemic models with empirical power law distribution of the events. Taking inspiration from a formal analogy between the equation for self-consistency of the epidemic type aftershock sequences (ETAS) model and the fractional differential equation describing the mean value of fractional linear growth processes, we show some interesting applications of fractional modelling in studying ab initio epidemic processes without the assumption of any empirical distribution. We also show that, in the framework of fractional modelling, subcritical regimes can be linked to linear fractional death processes and supercritical regimes to linear fractional birth processes. Moreover we discuss a simple toy model in order to underline the possible application of these stochastic growth models to more general epidemic phenomena such as tumoral growth. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3704 / 3709
页数:6
相关论文
共 13 条
  • [1] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [2] Cancer metabolism and the dynamics of metastasis
    Dattoli, G.
    Guiot, C.
    Delsanto, P. P.
    Ottaviani, P. L.
    Pagnutti, S.
    Deisboeck, T. S.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2009, 256 (03) : 305 - 310
  • [3] Debnath L., 2003, Int. J. Math. Math. Sci, V2003, P3413
  • [4] Diethelm K., 2010, LECT NOTES MATH
  • [5] Predictability in the epidemic-type aftershock sequence model of interacting triggered seismicity
    Helmstetter, A
    Sornette, D
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2003, 108 (B10)
  • [6] Subcritical and supercritical regimes in epidemic models of earthquake aftershocks
    Helmstetter, A
    Sornette, D
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2002, 107 (B10)
  • [7] Mainardi F., 2000, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, DOI DOI 10.1142/P926
  • [8] Space-time point-process models for earthquake occurrences
    Ogata, Y
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1998, 50 (02) : 379 - 402
  • [9] Fractional pure birth processes
    Orsingher, Enzo
    Polito, Federico
    [J]. BERNOULLI, 2010, 16 (03) : 858 - 881
  • [10] Fractional Non-Linear, Linear and Sublinear Death Processes
    Orsingher, Enzo
    Polito, Federico
    Sakhno, Ludmila
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (01) : 68 - 93