Rapidly Tunable Quantum Cascade Lasers

被引:19
作者
Suchalkin, Sergey [1 ]
Belenky, Gregory [1 ]
Belkin, Mikhail A. [2 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78759 USA
基金
美国国家科学基金会;
关键词
Distributed feedback lasers; optical FM communications; quantum cascade lasers; spectroscopy; tunable lasers; LINEWIDTH ENHANCEMENT FACTOR; DISTRIBUTED-FEEDBACK; FREQUENCY-MODULATION; SPECTROSCOPY; GAIN; SEMICONDUCTOR; COMMUNICATION; TEMPERATURE; RESONANCE;
D O I
10.1109/JSTQE.2015.2425295
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Operation principles and designs of rapidly tunable quantum cascade lasers (QCL) were analyzed theoretically and experimentally. Theoretical analysis shows that by adding a special polarization transition with controllable intensity or energy to existing QCL designs, one can achieve emission frequency modulation Delta upsilon approximate to 30 GHz for the carrier wavelength of 10 mu m, while introducing additional optical losses of not more than 10 cm(-1) in the laser waveguide. Proof-of-principle electrically tunable QCL demonstrated frequency shift of 4.5 GHz. Rapid and continuous frequency tuning of a single-mode distributed-feedback quantum cascade laser (DFB QCL) by optical generation of electron-hole pairs in the laser waveguide and active area was demonstrated. Application of optimized pumping geometry made possible to achieve continuous tuning of a room-temperature-operated DFB QCL in the range of 0.6 cm(-1) (20 GHz) using 1.3-mu m telecom diode laser as a pumping source. The wavelength of the optically tunable DFB QCL was modulated at frequencies up to 300 MHz.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 52 条
[1]   Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser [J].
Aellen, Thierry ;
Maulini, Richard ;
Terazzi, Romain ;
Hoyler, Nicolas ;
Giovannini, Marcella ;
Faist, Jerome ;
Blaser, Stephane ;
Hvozdara, Lubos .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[2]   Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices [J].
Aellen, Thierry ;
Beck, Mattias ;
Hoyler, Nicolas ;
Giovannini, Marcella ;
Faist, Jerome ;
Gini, Emilio .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)
[3]   Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection [J].
Bakhirkin, YA ;
Kosterev, AA ;
Roller, C ;
Curl, RF ;
Tittel, FK .
APPLIED OPTICS, 2004, 43 (11) :2257-2266
[4]   Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives [J].
Bauer, C. ;
Geiser, P. ;
Burgmeier, J. ;
Holl, G. ;
Schade, W. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (2-3) :251-256
[5]   Linewidth measurement of free-running, pulsed, distributed feedback quantum cascade lasers [J].
Beyer, T ;
Braun, M ;
Hartwig, S ;
Lambrecht, A .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (09) :4551-4554
[6]   Electrically tunable, high performance quantum cascade laser [J].
Bismuto, A. ;
Terazzi, R. ;
Beck, M. ;
Faist, Jerome .
APPLIED PHYSICS LETTERS, 2010, 96 (14)
[7]   Free-space optical data link using Peltier-cooled quantum cascade laser [J].
Blaser, S ;
Hofstetter, D ;
Beck, M ;
Faist, J .
ELECTRONICS LETTERS, 2001, 37 (12) :778-780
[8]   High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line [J].
Calvar, A. ;
Amanti, M. I. ;
St-Jean, M. Renaudat ;
Barbieri, S. ;
Bismuto, A. ;
Gini, E. ;
Beck, M. ;
Faist, J. ;
Sirtori, C. .
APPLIED PHYSICS LETTERS, 2013, 102 (18)
[9]   Quantum cascade lasers: Ultrahigh-Speed operation, optical wireless communication, narrow linewidth, and far-infrared emission [J].
Capasso, F ;
Paiella, R ;
Martini, R ;
Colombelli, R ;
Gmachl, C ;
Myers, TL ;
Taubman, MS ;
Williams, RM ;
Bethea, CG ;
Unterrainer, K ;
Hwang, HY ;
Sivco, DL ;
Cho, AY ;
Sergent, AM ;
Liu, HC ;
Whittaker, EA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :511-532
[10]   Quantum cascade lasers [J].
Capasso, F ;
Gmachl, C ;
Sivco, DL ;
Cho, AY .
PHYSICS TODAY, 2002, 55 (05) :34-40