Multiple scale analysis of complex networks using the empirical mode decomposition method

被引:5
作者
Li, KePing [1 ]
Gao, ZiYou [1 ]
Zhao, XiaoMei [1 ]
机构
[1] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
EMD method; complex network; random walk;
D O I
10.1016/j.physa.2008.01.036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Empirical mode decomposition (EMD) method can decompose any complicated data into finite 'intrinsic mode functions' (IMFs). In this paper, we use EMD method to analyze and discuss the structural properties of complex networks. A random-walk method is used to collect the data series of network systems. Utilizing the EMD method, we decompose the obtained data into finite IMFs under different spatial scales. The analysis results show that EMD method is an effective tool for capturing the topological properties of network systems under different spatial scales, such as the modular structures of network systems and their energy densities. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2981 / 2986
页数:6
相关论文
共 16 条
[1]   Search in power-law networks [J].
Adamic, L.A. ;
Lukose, R.M. ;
Puniyani, A.R. ;
Huberman, B.A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (4 II) :461351-461358
[2]   Statistics of weighted treelike networks [J].
Almaas, E ;
Krapivsky, PL ;
Redner, S .
PHYSICAL REVIEW E, 2005, 71 (03)
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[5]   Separating internal and external dynamics of complex systems -: art. no. 068701 [J].
de Menezes, MA ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2004, 93 (06) :068701-1
[6]   Fluctuations in network dynamics -: art. no. 028701 [J].
de Menezes, MA ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2004, 92 (02) :4
[7]  
DEREK AT, 2004, NATURE, V427, P344
[8]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]   Relaxation properties of small-world networks [J].
Jespersen, S ;
Sokolov, IM ;
Blumen, A .
PHYSICAL REVIEW E, 2000, 62 (03) :4405-4408