A generalization of the duality and sum formulas on the multiple zeta values

被引:120
作者
Ohno, Y [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
D O I
10.1006/jnth.1998.2314
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a relation among the multiple zeta values which generalizes simultaneously the "sum formula" and the "duality" theorem. As an application, we give a formula for the special values at positive integral points of a certain zeta function of Arakawa and Kaneko in terms of multiple harmonic series. (C) 1999 Academic Press.
引用
收藏
页码:39 / 43
页数:5
相关论文
共 9 条
[1]  
ARAKAWA T, IN PRESS NAGOYA MATH
[2]  
ARAKAWA T, 1997, P S TSUD U, V2, P133
[3]   EXPLICIT EVALUATION OF EULER SUMS [J].
BORWEIN, D ;
BORWEIN, JM ;
GIRGENSOHN, R .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 :277-294
[4]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[5]  
Huard JG, 1996, ACTA ARITH, V75, P105
[6]  
Kaneko M., 1997, J THEOR NOMBR BORDX, V9, p221 228, DOI DOI 10.5802/JTNB.197
[7]   KONTSEVICHS INTEGRAL FOR THE HOMFLY POLYNOMIAL AND RELATIONS BETWEEN VALUES OF MULTIPLE ZETA-FUNCTIONS [J].
LE, TQT ;
MURAKAMI, J .
TOPOLOGY AND ITS APPLICATIONS, 1995, 62 (02) :193-206
[8]  
LEWIN L, 1980, POLYLOGARITHMS ASS F
[9]  
ZAGIER D, 1994, PROG MATH, V120, P497