Honeycomb-like N-doped porous carbon derived from poly(Schiff-base) as an electrode material for high-performance supercapacitor

被引:16
|
作者
Wang, Meng [1 ]
Zhao, Jingyuan [1 ]
Zhang, Da [1 ]
Chen, Zhuo [1 ]
Zheng, Jinxin [1 ]
Zhang, Pengfei [1 ]
Deng, Kuilin [1 ]
机构
[1] Hebei Univ, Coll Chem & Environm Sci, Baoding 071002, Peoples R China
关键词
Poly(Schiff-base); Nitrogen-doping; Porous carbon; Supercapacitors; NANOPOROUS CARBONS; ASSISTED SYNTHESIS; NITROGEN; COMPOSITES; CAPACITANCE; NETWORK; SHELLS;
D O I
10.1016/j.jelechem.2022.116109
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the design of carbon-based electrode materials, the introduction of heteroatoms and fabrication of the hierarchical porous structures are two important strategies to improve the performance of supercapacitors. In this investigation, based on the dispersion polymerization of 1,2,4,5-benzenetetramine tetrahydrochloride and terephthalaldehyde in ethanol, followed by etching with KOH and carbonizing at 500-800 degrees C of the resulting microspheric poly(Schiff-base), a honeycomb-like N-doped porous carbon material (N-PCMs) was synthesized. The specific surface area of porous N-PCMs was measured as higher as 1164 m(2).g(-1). In 1 M Na2SO4 electrolyte, N-PCM-7 (sample carbonized at 700 degrees C) showed higher specific capacitance and good rate performance (297 F.g(-1) at 0.5 A.g(-1), and 186 F.g(-1) at 20 A.g(-1)). To get closer to the practical application, the button-type symmetrical supercapacitors (N-PCM-7D) have made from the N-PCM-7, for this supercapacitor, its specific capacitance was determined to be up to 158 F.g(-1) under the condition of 0.5 A.g(-1). Furthermore, the supercapacitor still has a capacitance retention rate of 89.4% after 10,000 cycles at 1 A.g(-1), indicating higher-performance for energy storage and the potential applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] From weed to N/O/S co-doped honeycomb-like porous carbon for high-performance supercapacitors: a facile and friendly one-step carbonization
    Bian, Zhentao
    Li, Meng
    Liu, Taoqin
    Liu, Chengcheng
    Zhu, Yanyan
    Cao, Hongxia
    Zhu, Guang
    Wang, Hongyan
    Chen, Chong
    Zhang, Keying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965
  • [22] N-Doped Porous Carbon Nanofiber Mats for High-Performance Flexible Supercapacitor Electrodes
    Shen, Baolei
    Hu, Xianjin
    Ren, Hai-Tao
    Lin, Jia-Horng
    Lou, Ching-Wen
    Li, Ting-Ting
    ENERGY TECHNOLOGY, 2024, 12 (04)
  • [23] Highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode
    Lin, Honghai
    Tan, Zhixiang
    Yang, Jiewei
    Mo, Rumeng
    Liang, Yeru
    Zheng, Mingtao
    Hu, Hang
    Dong, Hanwu
    Liu, Xiangrong
    Liu, Yingliang
    Xiao, Yong
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [24] From biological waste to honeycomb-like porous carbon for high energy density supercapacitor
    Wang, Yahui
    Zhao, Ziyu
    Song, Weiwei
    Wang, Zhichao
    Wu, Xiaoliang
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (06) : 4917 - 4927
  • [25] Biomass Derived N-Doped Porous Carbon Made from Reed Straw for an Enhanced Supercapacitor
    Liao, Yuyi
    Shang, Zhongtao
    Ju, Guangrui
    Wang, Dingke
    Yang, Qiao
    Wang, Yuan
    Yuan, Shaojun
    MOLECULES, 2023, 28 (12):
  • [26] Oxygenated N-doped porous carbon derived from ammonium alginate: Facile synthesis and superior electrochemical performance for supercapacitor
    Wei, Kaiying
    Zhang, Feng
    Yang, Ying
    Zhai, Bin
    Wang, Xiuying
    Song, Yu
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [27] N-doped honeycomb-like porous carbon derived from biomass as an efficient carbocatalyst for H2S selective oxidation
    Xu, Chi
    Chen, Jian
    Li, Shiyan
    Gu, Qingqing
    Wang, Dajun
    Jiang, Chengfa
    Liu, Yuefeng
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 403
  • [28] Lignin-Derived Activated Carbon as Electrode Material for High-Performance Supercapacitor
    Pan, Chenghao
    Ji, Yongfeng
    Ren, Suxia
    Lei, Tingzhou
    Dong, Lili
    MOLECULES, 2025, 30 (01):
  • [29] Insulation board-derived N/O self-doped porous carbon as an electrode material for high-performance symmetric supercapacitors
    Su, Yingjie
    Lu, Zhenjie
    Cheng, Junxia
    Zhao, Xuefei
    Chen, Xingxing
    Gao, Lijuan
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (37) : 17503 - 17512
  • [30] Novel strategy for efficient conversion of biomass into N-doped graphitized carbon nanosheets as high-performance electrode material for supercapacitor
    Wang, Baoli
    Jiao, Rongting
    Shi, Fan
    Li, Guangjiu
    Zhou, Juan
    Huang, Yuhao
    Sun, Wei
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 181