Super-integrable Calogero-type systems admit maximal number of Poisson structures

被引:34
作者
Gonera, C
Nutku, Y
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
[2] Univ Lodz, Dept Field Theory, PL-90236 Lodz, Poland
关键词
D O I
10.1016/S0375-9601(01)00365-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general scheme for constructing the Poisson structure of super-integrable dynamical systems of which the rational Calogero-Moser system is the most interesting one. This dynamical system is 2N-dimensional with 2N - 1 first integrals and our construction yields 2N - 1 degenerate Poisson tensors that each admit 2(N - 1) Casimirs. Our results are quite generally applicable to all super-integrable systems and form an alternative to the traditional bi-Hamiltonian approach. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 25 条
[1]   EXACT SOLUTION OF A ONE-DIMENSIONAL 3-BODY SCATTERING PROBLEM WITH 2-BODY AND OR 3-BODY INVERSE-SQUARE POTENTIALS [J].
CALOGERO, F ;
MARCHIORO, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (09) :1425-1430
[2]   Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials (vol 12, pg 419, 1971) [J].
Calogero, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) :3646-3646
[3]   EXACTLY SOLVABLE ONE-DIMENSIONAL MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (11) :411-416
[4]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[6]   SUPERINTEGRABILITY OF THE WINTERNITZ SYSTEM [J].
EVANS, NW .
PHYSICS LETTERS A, 1990, 147 (8-9) :483-486
[7]   On the superintegrability of Calogero-Moser-Sutherland model [J].
Gonera, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (19) :4465-4472
[8]   A note on superintegrability of the quantum Calogero model [J].
Gonera, C .
PHYSICS LETTERS A, 1998, 237 (06) :365-368
[9]  
GUMRAL H, 1993, J MATH PHYS, V34, P5691, DOI 10.1063/1.530278
[10]   RECURSION OPERATORS - MEANING AND EXISTENCE FOR COMPLETELY INTEGRABLE SYSTEMS [J].
LANDI, G ;
MARMO, G ;
VILASI, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (02) :808-815