共 31 条
UTP transactivates epidermal growth factor receptors and promotes cardiomyocyte hypertrophy despite inhibiting transcription of the hypertrophic marker gene, atrial natriuretic peptide
被引:28
作者:
Morris, JB
Pham, TM
Kenney, B
Sheppard, KE
Woodcock, EA
机构:
[1] Baker Heart Res Inst, Cellular Biochem Lab, Melbourne, Vic 8008, Australia
[2] Baker Heart Res Inst, Gene Transcript Lab, Melbourne, Vic 8008, Australia
关键词:
D O I:
10.1074/jbc.M310012200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
In neonatal rat ventricular myocytes, activation of receptors that couple to the G(q) family of heterotrimeric G proteins causes hypertrophic growth, together with expression of "hypertrophic marker" genes, such as atrial natriuretic peptide (ANP) and myosin light chain 2 (MLC2). As reported previously for other G(q)-coupled receptors, stimulation of alpha(1)-adrenergic receptors with phenylephrine ( 50 muM) caused phosphorylation of epidermal growth factor (EGF) receptors as well as activation of ERK1/2, cellular growth, and ANP transcription. These responses depended on EGF receptor activation. In marked contrast, stimulation of G(q)-coupled purinergic receptors with UTP caused EGF receptor phosphorylation, ERK1/2 activation, and cellular growth but minimal increases in ANP transcription. UTP inhibited phenylephrine-dependent transcription from ANP and MLC2 promoters but not transcription from myoglobin promoters or from AP-1 elements. Myocardin is a muscle-specific transcription enhancer that activates transcription from ANP and MLC2 promoters but not myoglobin promoters or AP-1 elements. UTP inhibited ANP and MLC2 responses to overexpressed myocardin but did not inhibit responses to c-Jun, GATA4, or serum response factor, all of which are active in nonmuscle cells. Thus, UTP inhibits transcriptional responses to phenylephrine only at cardiac-specific promoters, and this may involve the muscle-specific transcription enhancer, myocardin. These studies show that EGF receptor activation is necessary but not sufficient for ANP and MLC2 responses to activation of G(q)-coupled receptors in ventricular myocytes, because inhibitory mechanisms can oppose such stimulation. ANP is a compensatory and protective factor in cardiac hypertrophy, and mechanisms that reduce its generation need to be defined.
引用
收藏
页码:8740 / 8746
页数:7
相关论文