Robust local polynomial regression for dependent data

被引:6
|
作者
Jiang, JC [1 ]
Mack, YP
机构
[1] Beijing Univ, Dept Probabil & Stat, Beijing 100871, Peoples R China
[2] Univ Calif Davis, Div Stat, Davis, CA 95616 USA
关键词
data-driven; local M-estimator; local polynomial regression; mixing condition; one-step; robustness;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-j, Y-j)(j=1)(n) be a realization of a bivariate jointly strictly stationary process. We consider a robust estimator of the regression function M(x) = E(Y/X = x) by using local polynomial regression techniques. The estimator is a local M-estimator weighted by a kernel function. Under mixing conditions satisfied by many time series models, together with other appropriate conditions, consistency and asymptotic normality results are established. One-step local M-estimators are introduced to reduce computational burden. In addition, we give a data-driven choice for minimizing the scale factor involving the Psi -function in the asymptotic covariance expression, by drawing a parallel with the class of Huber's Psi -functions. The method is illustrated via two examples.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 50 条
  • [41] Some robust designs for polynomial regression models
    Fang, Zhide
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (04): : 623 - 638
  • [42] Robust regression designs for approximate polynomial models
    Fang, ZD
    Wiens, DP
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 117 (02) : 305 - 321
  • [43] A robust local polynomial collocation method
    Wu, Nan-Jing
    Tsay, Ting-Kuei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (04) : 355 - 375
  • [44] Multi-resolution analysis of non-uniform data with jump discontinuities and impulsive noise using robust local polynomial regression
    Chan, SC
    Zhang, ZG
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 769 - 772
  • [45] Local polynomial estimation of a conditional mean function with dependent truncated data
    Liang, Han-Ying
    de Una-Alvarez, Jacobo
    del Carmen Iglesias-Perez, Maria
    TEST, 2011, 20 (03) : 653 - 677
  • [46] Local polynomial estimation of a conditional mean function with dependent truncated data
    Han-Ying Liang
    Jacobo de Uña-Álvarez
    María del Carmen Iglesias-Pérez
    TEST, 2011, 20 : 653 - 677
  • [47] Binary quantile regression with local polynomial smoothing
    Chen, Songnian
    Zhang, Hanghui
    JOURNAL OF ECONOMETRICS, 2015, 189 (01) : 24 - 40
  • [48] Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression
    Kai, Bo
    Li, Runze
    Zou, Hui
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 49 - 69
  • [49] LOCAL POLYNOMIAL AND PENALIZED TRIGONOMETRIC SERIES REGRESSION
    Huang, Li-Shan
    Chan, Kung-Sik
    STATISTICA SINICA, 2014, 24 (03) : 1215 - 1238
  • [50] Local polynomial regression estimators in survey sampling
    Breidt, FJ
    Opsomer, JD
    ANNALS OF STATISTICS, 2000, 28 (04): : 1026 - 1053