Finite-range corrections to the thermodynamics of the one-dimensional Bose gas

被引:9
作者
Cappellaro, A. [1 ,2 ]
Salasnich, L. [1 ,2 ,3 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
[2] Univ Padua, CNISM, Via Marzolo 8, I-35131 Padua, Italy
[3] CNR INO, Via Nello Carrara, I-150019 Sesto Fiorentino, Italy
关键词
QUANTUM PHASE-TRANSITION; BOSONS; RENORMALIZATION; REGULARIZATION; SCATTERING; SYSTEM; ATOMS;
D O I
10.1103/PhysRevA.96.063610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Lieb-Liniger equation of state accurately describes the zero-temperature universal properties of a dilute one-dimensional Bose gas in terms of the s-wave scattering length. For weakly interacting bosons we derive nonuniversal corrections to this equation of state taking into account finite-range effects of the interatomic potential. Within the finite-temperature formalism of functional integration we find a beyond-mean-field equation of state which depends on scattering length and effective range of the interaction potential. Our analytical results, which are obtained performing dimensional regularization of divergent zero-point quantum fluctuations, show that for the one-dimensional Bose gas thermodynamic quantities such as pressure and sound velocity are modified by changing the ratio between the effective range and the scattering length.
引用
收藏
页数:5
相关论文
共 47 条
[1]  
Altland A., 2006, Condensed Matter Field Theory
[2]   Theory of the weakly interacting Bose gas [J].
Andersen, JO .
REVIEWS OF MODERN PHYSICS, 2004, 76 (02) :599-639
[3]  
Barlette V. E., 2000, European Journal of Physics, V21, P435, DOI 10.1088/0143-0807/21/5/309
[4]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[5]   Nonuniversal effects in the homogeneous Bose gas [J].
Braaten, E ;
Hammer, HW ;
Hermans, S .
PHYSICAL REVIEW A, 2001, 63 (06) :12
[6]   Quantum corrections to the energy density of a homogeneous Bose gas [J].
Braaten, E ;
Nieto, A .
EUROPEAN PHYSICAL JOURNAL B, 1999, 11 (01) :143-159
[7]  
Cabrera C. R., ARXIV170807806
[8]   Thermal field theory of bosonic gases with finite-range effective interaction [J].
Cappellaro, A. ;
Salasnich, L. .
PHYSICAL REVIEW A, 2017, 95 (03)
[9]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[10]   Monopole Excitations of a Harmonically Trapped One-Dimensional Bose Gas from the Ideal Gas to the Tonks-Girardeau Regime [J].
Choi, S. ;
Dunjko, V. ;
Zhang, Z. D. ;
Olshanii, M. .
PHYSICAL REVIEW LETTERS, 2015, 115 (11)