Instance-Level Salient Object Segmentation

被引:214
作者
Li, Guanbin [1 ,2 ]
Xie, Yuan [1 ]
Lin, Liang [1 ]
Yu, Yizhou [2 ]
机构
[1] Sun Yat Sen Univ, Guangzhou, Guangdong, Peoples R China
[2] Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR.2017.34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image saliency detection has recently witnessed rapid progress due to deep convolutional neural networks. However, none of the existing methods is able to identify object instances in the detected salient regions. In this paper, we present a salient instance segmentation method that produces a saliency mask with distinct object instance labels for an input image. Our method consists of three steps, estimating saliency map, detecting salient object contours and identifying salient object instances. For the first two steps, we propose a multiscale saliency refinement network, which generates high-quality salient region masks and salient object contours. Once integrated with multiscale combinatorial grouping and a MAP-based subset optimization framework, our method can generate very promising salient object instance segmentation results. To promote further research and evaluation of salient instance segmentation, we also construct a new database of 1000 images and their pixel-wise salient instance annotations. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks for salient region detection as well as on our new dataset for salient instance segmentation.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 53 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]  
[Anonymous], 2016, ARXIV160308678
[3]  
[Anonymous], 2002, ACM MM
[4]   Multiscale Combinatorial Grouping [J].
Arbelaez, Pablo ;
Pont-Tuset, Jordi ;
Barron, Jonathan T. ;
Marques, Ferran ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :328-335
[5]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[6]   Seam carving for content-aware image resizing [J].
Avidan, Shai ;
Shamir, Ariel .
ACM TRANSACTIONS ON GRAPHICS, 2007, 26 (03)
[7]  
Bertasius G, 2015, PROC CVPR IEEE, P4380, DOI 10.1109/CVPR.2015.7299067
[8]  
Borji A., 2012, CVPR, DOI DOI 10.1109/CVPR.2012.6247706
[9]  
Chen L.-C., 2014, ARXIV
[10]  
Chen L.-C., 2015, Attention to scale: Scale-aware semantic image segmentation