Principal component ridge type estimator for the inverse Gaussian regression model

被引:12
作者
Akram, Muhammad Nauman [1 ]
Amin, Muhammad [1 ]
Lukman, Adewale F. [2 ]
Afzal, Saima [3 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Univ Med Sci, Dept Epidemiol & Biostat, Ondo, Nigeria
[3] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
Maximum likelihood estimation; inverse Gaussian regression model; ridge estimator; principal component estimator; multicollinearity; mean squared error; 2-PARAMETER ESTIMATOR; UNBIASED RIDGE; PERFORMANCE;
D O I
10.1080/00949655.2021.2020274
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The inverse Gaussian regression model (IGRM) is applied when the response variable y is continuous, positively skewed and well fitted to the inverse Gaussian distribution. In the presence of multicollinearity, the maximum likelihood estimation (MLE) is not a right choice. Therefore, we proposed a new estimator called the principal component ridge estimator for the IGRM which combines the principal component estimator and the ridge estimator. We also consider a two-parameter estimator (TPE) and other biased estimators to see a clear image of our proposed estimator. A Monte Carlo simulation study is also presented to examine the performance of the proposed estimators. Furthermore, we analysed a dataset to assess the superiority of the proposed estimator. Based on the simulation and application results, it is evident that the proposed estimator dominates the classical MLE, and other considered biased estimation methods.
引用
收藏
页码:2060 / 2089
页数:30
相关论文
共 40 条
[1]  
Abdelgadir GA., 2016, INT J RES, V3, P1
[2]   Using principal components for estimating logistic regression with high-dimensional multicollinear data [J].
Aguilera, AM ;
Escabias, M ;
Valderrama, MJ .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (08) :1905-1924
[3]   Two-parameter estimator for the inverse Gaussian regression model [J].
Akram, Muhammad Naumanm ;
Amin, Muhammad ;
Amanullah, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) :6208-6226
[4]  
Al-Hassan YM., 2009, Applied Mathematical Sciences, V3, P2085
[5]   Performance of ridge estimator in inverse Gaussian regression model [J].
Algamal, Zakariya Yahya .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) :3836-3849
[6]   Developing a ridge estimator for the gamma regression model [J].
Algamal, Zakariya Yahya .
JOURNAL OF CHEMOMETRICS, 2018, 32 (10)
[7]   Shrinkage estimators for gamma regression model [J].
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) :253-268
[8]  
Amin M., 2020, COMMUN STAT-SIMUL C, P1
[9]   Performance of Asar and Genc and Huang and Yang's Two-Parameter Estimation Methods for the Gamma Regression Model [J].
Amin, Muhammad ;
Qasim, Muhammad ;
Amanullah, Muhammad .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6) :2951-2963
[10]   Performance of some ridge estimators for the gamma regression model [J].
Amin, Muhammad ;
Qasim, Muhammad ;
Amanullah, Muhammad ;
Afzal, Saima .
STATISTICAL PAPERS, 2020, 61 (03) :997-1026