Non-local theory solution of a limited-permeable mode-I crack in a piezoelectric/piezomagnetic material plane

被引:0
作者
Zhou, Zhen-Gong [1 ]
Zhang, Pei-Wei [2 ]
Wu, Lin-Zhi [1 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Peoples R China
[2] Southeast Univ, Sch Civil Engn, Dept Engn Mech, Nanjing 210096, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2011年 / 91卷 / 03期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Piezoelectric/piezomagnetic media; limited-permeable crack; non-local theory; Schmidt method; lattice parameter; PIEZOELECTRIC MATERIALS; MAGNETOELECTROELASTIC SOLIDS; FRACTURE-MECHANICS; LINE CRACK; COLLINEAR CRACKS; GENERAL-SOLUTION; ANTIPLANE SHEAR; ELASTICITY; COMPOSITE; DEFORMATION;
D O I
10.1002/zamm.201000071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-local theory solution of a limited-permeable mode-I crack in a piezoelectric/piezomagnetic media was given by using the generalized Almansi's theorem and the Schmidt method in the present paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the lattice parameter, the crack length, the electric permittivity, and the magnetic permeability of the air inside the crack on the stress field, the electric displacement field, and the magnetic field near the crack tip. Different from the classical solution that the present solution exhibits no stress, electric displacement, and magnetic flux singularities at the crack tips in a piezoelectric/piezomagnetic media. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:192 / 213
页数:22
相关论文
共 40 条
[31]   Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation [J].
Spyropoulos, CP ;
Sih, GC ;
Song, ZF .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2003, 39 (03) :281-289
[32]   Multiple crack interaction problem in magnetoelectroelastic solids [J].
Tian, WY ;
Gabbert, U .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2004, 23 (04) :599-614
[33]   Fracture of piezoelectromagnetic materials [J].
Wang, BL ;
Mai, YW .
MECHANICS RESEARCH COMMUNICATIONS, 2004, 31 (01) :65-73
[34]  
Wang X, 2002, INT J ENG SCI, V40, P1069, DOI 10.1016/S0020-7225(02)00006-X
[35]   Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases [J].
Wu, TL ;
Huang, JH .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (21) :2981-3009
[36]  
Yan W.F., 1967, SIAM J APPL MATH, V15, P219
[37]   Fracture mechanics for a Mode I crack in piezoelectric materials [J].
Yang, FQ .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (21) :3813-3830
[38]   Analysis method of planar cracks of arbitrary shape in the isotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium [J].
Zhao, MingHao ;
Fan, CuiYing ;
Yang, Feng ;
Liu, Tong .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (13) :4505-4523
[39]   Non-local theory solution of two mode-I collinear cracks in the piezoelectric materials [J].
Zhou, Zhen-Gong ;
Wu, Lin-Zhi ;
Du, Shan-Yi .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2007, 14 (03) :191-201
[40]   Non-local theory solution for a Mode I crack in piezoelectric materials [J].
Zhou, Zhen-Gong ;
Wu, Lin-Zhi ;
Du, Shan-Yi .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2006, 25 (05) :793-807