Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices

被引:27
作者
DeJarnette, Drew [1 ]
Norman, Justin [2 ]
Roper, D. Keith [1 ,2 ]
机构
[1] Univ Arkansas, Microelect & Photon Grad Program, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Dept Chem Engn, Fayetteville, AR 72701 USA
关键词
METAL NANOPARTICLES; GOLD NANOPARTICLES; OPTICAL-PROPERTIES; GRAPHENE; NANOSTRUCTURES; SYSTEMS; ENHANCEMENT; ARRAYS; FIELD; SHAPE;
D O I
10.1364/PRJ.2.000015
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fano resonances between plasmons and diffracted light offer tunable energies and locales, but attribution of Fano resonance features to geometry and physicochemistry of metal nanostructures and adjacent dielectrics has been confounded by complexity and computational expense. This work shows predictable modal shifts of Fano resonance in square lattices of plasmonic nanostructures can be attributed directly to changes in medium wavenumber, particle size, and lattice constant that alter plasmon polarizability and diffractive interference. For 45 to 80 nm radius particles, a window of lattice constants that support Fano resonances is identified in a range from 500 to 900 nm. Lattice constants that support high intensity resonances are determined by individual particle polarizability and medium wavenumber. Fano resonance wavelengths redshift from diffracted photon energies as local refractive index (RI) changes due to coupling with particle polarizability in the window. Redshift sensitivities for quadrupole, dipole, and Fano resonances are 150, 348, and 541 nm, respectively, per RI unit. Fano resonance intensity may be enhanced more than tenfold by selecting nanoparticle sizes and lattice constants. The quantitative effects of such parametric changes are rapidly and intuitively distinguished using a semi-analytic approach, consisting of an exact expression for particle polarizability, a trigonometric description of diffraction, and a semi-analytical coupled dipole approximation. (C) 2014 Chinese Laser Press
引用
收藏
页码:15 / 23
页数:9
相关论文
共 63 条
[1]   Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films [J].
Ahn, Wonmi ;
Blake, Phillip ;
Shultz, John ;
Ware, Morgan E. ;
Roper, D. Keith .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03) :638-642
[2]   Directional Double Fano Resonances in Plasmonic Hetero-Oligomers [J].
Artar, Alp ;
Yanik, Ahmet Ali ;
Altug, Hatice .
NANO LETTERS, 2011, 11 (09) :3694-3700
[3]   Hybrid Quantum Dot-Metal Nanoparticle Systems: Connecting the Dots [J].
Artuso, R. D. ;
Bryant, G. W. .
ACTA PHYSICA POLONICA A, 2012, 122 (02) :289-293
[4]   Anomalous complete opaqueness in a sparse array of gold nanoparticle chains [J].
Bai, Benfeng ;
Li, Xiaowei ;
Vartiainen, Ismo ;
Lehmuskero, Anni ;
Kang, Guoguo ;
Turunen, Jari ;
Kuittinen, Markku ;
Vahimaa, Pasi .
APPLIED PHYSICS LETTERS, 2011, 99 (08)
[5]   Enhanced Nanoparticle Response From Coupled Dipole Excitation for Plasmon Sensors [J].
Blake, Phillip ;
Obermann, Jara ;
Harbin, Braden ;
Roper, Donald Keith .
IEEE SENSORS JOURNAL, 2011, 11 (12) :3332-3340
[6]   Enhanced Uniformity in Arrays of Electroless Plated Spherical Gold Nanoparticles Using Tin Presensitization [J].
Blake, Phillip ;
Ahn, Wonmi ;
Roper, D. Keith .
LANGMUIR, 2010, 26 (03) :1533-1538
[7]  
Bragg WL, 1913, NATURE, V90, P410
[8]   Plasmonic solar cells [J].
Catchpole, K.R. ;
Polman, A. .
Optics Express, 2008, 16 (26) :21793-21800
[9]   Quantum optics with surface plasmons [J].
Chang, D. E. ;
Sorensen, A. S. ;
Hemmer, P. R. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[10]   Fano Resonance in (Gold Core)-(Dielectric Shell) Nanostructures without Symmetry Breaking [J].
Chen, Huanjun ;
Shao, Lei ;
Man, Yat Cho ;
Zhao, Chunmei ;
Wang, Jianfang ;
Yang, Baocheng .
SMALL, 2012, 8 (10) :1503-1509