X-ray Diffraction from Membrane Protein Nanocrystals

被引:51
|
作者
Hunter, M. S. [1 ]
DePonte, D. P. [2 ,3 ]
Shapiro, D. A. [4 ,5 ]
Kirian, R. A. [2 ]
Wang, X. [2 ]
Starodub, D. [2 ,6 ]
Marchesini, S. [4 ]
Weierstall, U. [2 ]
Doak, R. B. [2 ]
Spence, J. C. H. [2 ]
Fromme, P. [1 ]
机构
[1] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[3] Univ Hamburg, CFEL, Hamburg, Germany
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Brookhaven Natl Lab, Upton, NY 11973 USA
[6] Stanford Linear Accelerator Ctr, PULSE Inst, Natl Accelerator Lab, Menlo Pk, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PHOTOSYSTEM-I; CRYSTAL-STRUCTURE; 3-DIMENSIONAL STRUCTURE; RADIATION-DAMAGE; CRYSTALLIZATION; CRYSTALLOGRAPHY; PHOTOSYNTHESIS; MODEL;
D O I
10.1016/j.bpj.2010.10.049
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 mu m. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells.
引用
收藏
页码:198 / 206
页数:9
相关论文
共 50 条
  • [1] Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals
    Awel, Salah
    Kirian, Richard A.
    Wiedorn, Max O.
    Beyerlein, Kenneth R.
    Roth, Nils
    Horke, Daniel A.
    Oberthuer, Dominik
    Knoska, Juraj
    Mariani, Valerio
    Morgan, Andrew
    Adriano, Luigi
    Tolstikova, Alexandra
    Xavier, P. Lourdu
    Yefanov, Oleksandr
    Aquila, Andrew
    Barty, Anton
    Roy-Chowdhury, Shatabdi
    Hunter, Mark S.
    James, Daniel
    Robinson, Joseph S.
    Weierstall, Uwe
    Rode, Andrei V.
    Bajt, Sasa
    Kuepper, Jochen
    Chapman, Henry N.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 : 133 - 139
  • [3] PHASING OF COHERENT X-RAY DIFFRACTION FROM NANOCRYSTALS
    Robinson, I.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C1 - C1
  • [4] Enhancement of coherent X-ray diffraction from nanocrystals by introduction of X-ray optics
    Robinson, IK
    Pfeiffer, F
    Vartanyants, IA
    Sun, YG
    Xia, YN
    OPTICS EXPRESS, 2003, 11 (19): : 2329 - 2334
  • [5] Computing shapes of nanocrystals from X-ray diffraction data
    Sherwood, Daniel
    Emmanuel, Bosco
    CRYSTAL GROWTH & DESIGN, 2006, 6 (06) : 1415 - 1419
  • [6] Protein Structure from X-Ray Diffraction
    M.W. Parker
    Journal of Biological Physics, 2003, 29 : 341 - 362
  • [7] Protein structure from X-ray diffraction
    Parker, MW
    JOURNAL OF BIOLOGICAL PHYSICS, 2003, 29 (04) : 341 - 362
  • [8] Computer simulation and X-ray diffraction of nanocrystals
    Chang, Ming
    Yang, Baohe
    Xi, Xiaolu
    Chang, Hao
    Journal of Materials Science and Technology, 2001, 17 (03): : 333 - 337
  • [9] Computer Simulation and X-ray Diffraction of Nanocrystals
    Ming CHANG
    JournalofMaterialsScience&Technology, 2001, (03) : 333 - 337
  • [10] X-RAY DIFFRACTION OF INTERFACES IN NANOCRYSTALS.
    Wang, Yuming
    Xing, Kai
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C585 - C585