Pulsed Millimeter Wave Radar for Hand Gesture Sensing and Classification

被引:32
作者
Fhager, Lars Ohlsson [1 ]
Heunisch, Sebastian [1 ]
Dahlberg, Hannes [1 ,2 ]
Evertsson, Anton [1 ,3 ]
Wernersson, Lars-Erik [1 ]
机构
[1] Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden
[2] Axis Commun AB, S-22369 Lund, Sweden
[3] Acconeer AB, S-22363 Lund, Sweden
基金
瑞典研究理事会;
关键词
Microwave/millimeter wave sensors; classification; convolutional neural network; gesture sensing; hand gesture recognition; machine learning; millimeter wave radar; pulsed radar; transfer learning;
D O I
10.1109/LSENS.2019.2953022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A pulsed millimeter wave radar operating at a frame rate of 144 Hz is utilized to record 2160 scattering signatures of 12 generic hand gestures. Gesture recognition is achieved by machine learning, utilizing transfer learning on a pretrained convolutional neural network. This yields excellent classification results with a validation accuracy of 99.5%, based on a 60% training versus 40% validation split. The corresponding confusion matrix is also presented, showing a high level of classification orthogonality between the tested gestures. This is the first demonstration where data from a pulsed millimeter wave radar is used for gesture recognition by machine learning. It proves that the range-time envelope representation of high frame-rate data from a pulsed radar is suitable for hand gesture recognition. Further improvements are expected for more complex detection schemes and tailored neural networks.
引用
收藏
页数:4
相关论文
共 17 条
[1]   A 90 GHz Hybrid Switching Pulsed-Transmitter for Medical Imaging [J].
Arbabian, Amin ;
Callender, Steven ;
Kang, Shinwon ;
Afshar, Bagher ;
Chien, Jun-Chau ;
Niknejad, Ali M. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (12) :2667-2681
[2]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[3]   Millimeter-Wave Pulse Radar Scattering Measurements on the Human Hand [J].
Heunisch, Sebastian ;
Fhager, Lars Ohlsson ;
Wernersson, Lars-Erik .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (07) :1377-1380
[4]   Reflection of Coherent Millimeter-Wave Wavelets on Dispersive Materials: A Study on Porcine Skin [J].
Heunisch, Sebastian ;
Ohlsson, Lars ;
Wernersson, Lars-Erik .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (04) :2047-2054
[5]  
Hügler P, 2016, GER MICROW CONF, P259, DOI 10.1109/GEMIC.2016.7461605
[6]   Hand-Based Gesture Recognition for Vehicular Applications Using IR-UWB Radar [J].
Khan, Faheem ;
Leem, Seong Kyu ;
Cho, Sung Ho .
SENSORS, 2017, 17 (04)
[7]   A Hand Gesture Recognition Sensor Using Reflected Impulses [J].
Kim, Seo Yul ;
Han, Hong Gul ;
Kim, Jin Woo ;
Lee, Sanghoon ;
Kim, Tae Wook .
IEEE SENSORS JOURNAL, 2017, 17 (10) :2975-2976
[8]   Hand Gesture Recognition Using Micro-Doppler Signatures With Convolutional Neural Network [J].
Kim, Youngwook ;
Toomajian, Brian .
IEEE ACCESS, 2016, 4 :7125-7130
[9]   Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine [J].
Kim, Youngwook ;
Ling, Hao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (05) :1328-1337
[10]  
Lien JM, 2016, ACM T GRAPHIC, V35, DOI [10.1145/2897824.2925953, 10.1145/9999997.9999999]