Synergistic heterozygosity in mice with inherited enzyme deficiencies of mitochondrial fatty acid β-oxidation

被引:49
作者
Schuler, AM
Gower, BA
Matern, D
Rinaldo, P
Vockley, J
Wood, PA [1 ]
机构
[1] Univ Alabama, Dept Genet, Birmingham, AL USA
[2] Univ Alabama, Dept Nutr Sci, Birmingham, AL 35294 USA
[3] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA
[4] Mayo Clin, Coll Med, Dept Med Genet, Rochester, MN USA
[5] Childrens Hosp Pittsburgh, Pittsburgh, PA 15213 USA
关键词
mouse model; heterozygous; fat oxidation; acyl-CoA dehydrogenase; mitochondrial; acylcarnitine; cold challenge; metabolic challenge; hypothermia; inborn error of metabolism;
D O I
10.1016/j.ymgme.2004.09.006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We have used mice with inborn errors of mitochondrial fatty acid beta-oxidation to test the concept of synergistic heterozygosity. We postulated that clinical disease can result from heterozygous mutations in more than one gene in single or related metabolic pathways. Mice with combinations of mutations in mitochondrial fatty acid beta-oxidation genes were cold challenged to test their ability to maintain normal body temperature, a sensitive indicator of overall beta-oxidation function. This included mice of the following genotypes: triple heterozygosity for mutations in very-long-chain acyl CoA dehydrogenase, long-chain acyl CoA dehydrogenase, and short-chain acyl CoA dehydrogenase genes (VLCAD+/-//LCAD+/-//SCAD+/-); double heterozygosity for mutations in VLCAD and LCAD genes (VLCAD+/-//LCAD+/-); double heterozygosity for mutations in LCAD and SCAD genes (LCAD+/-//SCAD+/-); single heterozygous mice (VLCAD+/-, LCAD+/-, SCAD+/-) and wild-type. We found that approximately 33% of mice with any of the combined mutant genotypes tested became hypothermic during a cold challenge. All wild-type and single heterozygous mice maintained normal body temperature throughout a cold challenge. Despite development of hypothermia in some double heterozygous mice, blood glucose concentrations remained normal. Biochemical screening by acylcarnitine and fatty acid analyses demonstrated results that varied by genotype. Thus, physiologic reduction of the beta-oxidation pathway, characterized as cold intolerance, occurred in mice with double or triple heterozygosity; however, the derangement was milder than in mice homozygous for any of these mutations. These results substantiate the concept of synergistic heterozygosity and illustrate the potential complexity involved in diagnosis and characterization of inborn errors of fatty acid metabolism in humans. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 31 条
[21]   AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice [J].
O'Neill, Hayley M. ;
Lally, James S. ;
Galic, Sandra ;
Thomas, Melissa ;
Azizi, Paymon D. ;
Fullerton, Morgan D. ;
Smith, Brennan K. ;
Pulinilkunnil, Thomas ;
Chen, Zhiping ;
Samaan, M. Constantine ;
Jorgensen, Sebastian B. ;
Dyck, Jason R. B. ;
Holloway, Graham P. ;
Hawke, Thomas J. ;
van Denderen, Bryce J. ;
Kemp, Bruce E. ;
Steinberg, Gregory R. .
DIABETOLOGIA, 2014, 57 (08) :1693-1702
[22]   Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus [J].
Douglas, Donna N. ;
Pu, Christopher Hao ;
Lewis, Jamie T. ;
Bhat, Rakesh ;
Anwar-Mohamed, Anwar ;
Logan, Michael ;
Lund, Garry ;
Addison, William R. ;
Lehner, Richard ;
Kneteman, Norman M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (04) :1974-1990
[23]   Inhibition of nitric oxide synthase lowers fatty acid oxidation in preeclampsia-like mice at early gestational stage [J].
Ma Rui-qiong ;
Sun Min-na ;
Yang Zi .
CHINESE MEDICAL JOURNAL, 2011, 124 (19) :3141-3147
[24]   The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results [J].
Wanders, Ronald J. A. ;
Ruiter, Jos P. N. ;
IJlst, Lodewijk ;
Waterham, Hans R. ;
Houten, Sander M. .
JOURNAL OF INHERITED METABOLIC DISEASE, 2010, 33 (05) :479-494
[25]   Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes [J].
Choi, Joungil ;
Ravipati, Avinash ;
Nimmagadda, Vamshi ;
Schubert, Manfred ;
Castellani, Rudolph J. ;
Russell, James W. .
MITOCHONDRION, 2014, 18 :41-48
[26]   A mitochondrial long-chain fatty acid oxidation defect leads to transfer RNA uncharging and activation of the integrated stress response in the mouse heart [J].
Ranea-Robles, Pablo ;
Pavlova, Natalya N. ;
Bender, Aaron ;
Pereyra, Andrea S. ;
Ellis, Jessica M. ;
Stauffer, Brandon ;
Yu, Chunli ;
Thompson, Craig B. ;
Argmann, Carmen ;
Puchowicz, Michelle ;
Houten, Sander M. .
CARDIOVASCULAR RESEARCH, 2022, 118 (16) :3198-3210
[27]   trans-10,cis-12 Conjugated Linoleic Acid Enhances Endurance Capacity by Increasing Fatty Acid Oxidation and Reducing Glycogen Utilization in Mice [J].
Kim, Jun Ho ;
Kim, Jonggun ;
Park, Yeonhwa .
LIPIDS, 2012, 47 (09) :855-863
[28]   Bifidobacterium animalis subsp. lactis A6 Enhances Fatty Acid β-Oxidation of Adipose Tissue to Ameliorate the Development of Obesity in Mice [J].
Huo, Yanxiong ;
Zhao, Guoping ;
Li, Jinwang ;
Wang, Ran ;
Ren, Fazheng ;
Li, Yixuan ;
Wang, Xiaoyu .
NUTRIENTS, 2022, 14 (03)
[29]   High-Fat Diet Increases Fat Oxidation and Promotes Skeletal Muscle Fatty Acid Transporter Expression in Exercise-Trained Mice [J].
Yun, Hea-Yeon ;
Lee, Taein ;
Jeong, Yoonhwa .
JOURNAL OF MEDICINAL FOOD, 2020, 23 (03) :281-288
[30]   Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency [J].
Schiff, Manuel ;
Haberberger, Birgit ;
Xia, Chuanwu ;
Mohsen, Al-Walid ;
Goetzman, Eric S. ;
Wang, Yudong ;
Uppala, Radha ;
Zhang, Yuxun ;
Karunanidhi, Anuradha ;
Prabhu, Dolly ;
Alharbi, Hana ;
Prochownik, Edward V. ;
Haack, Tobias ;
Haeberle, Johannes ;
Munnich, Arnold ;
Roetig, Agnes ;
Taylor, Robert W. ;
Nicholls, Robert D. ;
Kim, Jung-Ja ;
Prokisch, Holger ;
Vockley, Jerry .
HUMAN MOLECULAR GENETICS, 2015, 24 (11) :3238-3247