The Moore-Gibson-Thompson equation with memory in the critical case

被引:123
作者
Dell'Oro, Filippo [1 ]
Lasiecka, Irena [2 ,3 ]
Pata, Vittorino [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Polish Acad Sci, IBS, Warsaw, Poland
基金
美国国家科学基金会;
关键词
Moore-Gibson-Thompson equation with memory; Memory kernel; Exponential decay; Semiuniform stability; STABILITY; PROPAGATION; SEMIGROUPS; ENERGY; DECAY; GASES;
D O I
10.1016/j.jde.2016.06.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following abstract version of the Moore-Gibson-Thompson equation with memory partial derivative(ttt)u(t) + alpha partial derivative(tt)u(t) + beta A partial derivative(t)u(t) + gamma Au(t) - integral(t) g(s)Au(t - s)ds = 0 depending on the parameters alpha, beta, gamma > 0, where A is strictly positive selfadjoint linear operator and g is a convex (nonnegative) memory kernel. In the subcritical case alpha beta > gamma, the related energy has been shown to decay exponentially in [19]. Here we discuss the critical case alpha beta = gamma, and we prove that exponential stability occurs if and only if A is a bounded operator. Nonetheless, the energy decays to zero when A is unbounded as well. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:4188 / 4222
页数:35
相关论文
共 33 条
[1]  
ANILE AM, 1984, J MEC THEOR APPL, V3, P167
[2]  
[Anonymous], 2001, Adv. Math. Sci. Appl.
[3]  
[Anonymous], 1993, DIFFER INTEGR EQUATI
[4]  
[Anonymous], COMMUNICATION
[5]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[6]  
Batty C.J.K., 1994, FUNCTIONAL ANAL OPER, V30
[7]   Non-uniform stability for bounded semi-groups on Banach spaces [J].
Batty, Charles J. K. ;
Duyckaerts, Thomas .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) :765-780
[8]   NOTE ON WEAK STABILIZABILITY OF CONTRACTION SEMIGROUPS [J].
BENCHIMOL, CD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) :373-379
[9]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[10]  
Dell'Oro F., 2016, APPL MATH O IN PRESS