Solving solitary wave solutions of higher dimensional nonlinear evolution equations with the homotopy analysis method

被引:7
作者
Shi Yu-Ren [1 ]
Wang Ying-Hai [1 ]
Yang Hong-Juan [2 ]
Duan Wen-Shan [2 ]
机构
[1] Lanzhou Univ, Inst Theoret Phys, Lanzhou 730000, Peoples R China
[2] NW Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Peoples R China
关键词
homotopy analysis method; modified Kadomtsev-Petviashvili equation; solitary wave solution;
D O I
10.7498/aps.56.6791
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtained a class of approximate solitary wave solutions for the (2 + 1)-dimensional modified Kadomtsev-Petviashvili equation by using the homotopy analysis method (HAM). The solutions obtained agree very well with the exact solutions. The results indicate that the HAM is still valid for solving solitary wave solutions of a class of higher dimensional evolution equations.
引用
收藏
页码:6791 / 6796
页数:6
相关论文
共 39 条
[1]   The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2007, 361 (06) :478-483
[2]   Exact flow of a third grade fluid past a porous plate using homotopy analysis method [J].
Ayub, M ;
Rasheed, A ;
Hayat, T .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (18) :2091-2103
[3]   Gauge symmetry in background charge conformal field theory [J].
Dolan, L .
NUCLEAR PHYSICS B, 1997, 489 (1-2) :245-263
[4]  
DUAN WS, 1998, ACTA PHYS SINICA, V47, P705
[5]   Connections among homogeneous balance method, Weiss-Tabor-Carnevale method and Clarkson-Kruskal method [J].
Fan, EG .
ACTA PHYSICA SINICA, 2000, 49 (08) :1409-1412
[6]  
FAN EG, 1998, ACTA PHYS SINICA, V47, P353
[7]   Optical solitary waves in the higher order nonlinear Schrodinger equation [J].
Gedalin, M ;
Scott, TC ;
Band, YB .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :448-451
[8]   Extended hyperbolic function method and new exact solitary wave solutions of Zakharov equations [J].
Huang, DJ ;
Zhang, HQ .
ACTA PHYSICA SINICA, 2004, 53 (08) :2434-2438
[9]  
Liao S, 2004, APPL MATH COMPUT, V147, P499, DOI [10.1016/S0096-3003(02)00790-7, 10.1016/50096-3003(02)00790-7]
[10]   An analytic approximate approach for free oscillations of self-excited systems [J].
Liao, SJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (02) :271-280