Heavy-tailed fractional Pearson diffusions

被引:10
|
作者
Leonenko, N. N. [1 ]
Papic, I. [2 ]
Sikorskii, A. [3 ]
Suvak, N. [2 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, S Glam, Wales
[2] JJ Strossmayer Univ Osijek, Dept Math, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia
[3] Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
基金
美国国家卫生研究院; 澳大利亚研究理事会;
关键词
Fractional diffusion; Fractional backward Kolmogorov equation; Hypergeometric function; Mittag-Leffler function; Pearson diffusion; Spectral representation; Transition density; Whittaker function; TIME RANDOM-WALKS; STATISTICAL-INFERENCE; ANOMALOUS DIFFUSION;
D O I
10.1016/j.spa.2017.03.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define heavy-tailed fractional reciprocal gamma and Fisher Snedecor diffusions by a non-Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in applications. The corresponding fractional reciprocal gamma and Fisher Snedecor diffusions are governed by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal gamma and Fisher Snedecor diffusions and strong solutions of the associated Cauchy problems for the fractional backward Kolmogorov equation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3512 / 3535
页数:24
相关论文
共 50 条
  • [21] Search heuristics and heavy-tailed behaviour
    Hulubei, T
    O'Sullivan, B
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2005, PROCEEDINGS, 2005, 3709 : 328 - 342
  • [22] Asymptotic Expansions for Heavy-Tailed Data
    Pastor, Giancarlo
    Mora-Jimenez, Inmaculada
    Caamano, Antonio J.
    Jantti, Riku
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 444 - 448
  • [23] HEAVY-TAILED BAYESIAN NONPARAMETRIC ADAPTATION
    Agapiou, Sergios
    Castillo, Ismael
    ANNALS OF STATISTICS, 2024, 52 (04): : 1433 - 1459
  • [24] CAUSAL DISCOVERY IN HEAVY-TAILED MODELS
    Gnecco, Nicola
    Meinshausen, Nicolai
    Peters, Jonas
    Engelke, Sebastian
    ANNALS OF STATISTICS, 2021, 49 (03): : 1755 - 1778
  • [25] The divisible sandpile with heavy-tailed variables
    Cipriani, Alessandra
    Hazra, Rajat Subhra
    Ruszel, Wioletta M.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (09) : 3054 - 3081
  • [26] ON THE ACCURACY OF INFERENCE ON HEAVY-TAILED DISTRIBUTIONS
    Novak, S. Y.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2014, 58 (03) : 509 - U202
  • [27] Queue management for the heavy-tailed traffics
    Nakashima, Takuo
    INTERNATIONAL JOURNAL OF SPACE-BASED AND SITUATED COMPUTING, 2012, 2 (04) : 201 - 208
  • [28] Measure for characterizing heavy-tailed networks
    Hill, Sam A.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [29] Minimax Policy for Heavy-tailed Bandits
    Wei, Lai
    Srivastava, Vaibhav
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 1155 - 1160
  • [30] Heavy-tailed configuration models at criticality
    Dhara, Souvik
    van der Hofstad, Remco
    van Leeuwaarden, Johan S. H.
    Sen, Sanchayan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 1515 - 1558