Heavy-tailed fractional Pearson diffusions

被引:10
|
作者
Leonenko, N. N. [1 ]
Papic, I. [2 ]
Sikorskii, A. [3 ]
Suvak, N. [2 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, S Glam, Wales
[2] JJ Strossmayer Univ Osijek, Dept Math, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia
[3] Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
基金
美国国家卫生研究院; 澳大利亚研究理事会;
关键词
Fractional diffusion; Fractional backward Kolmogorov equation; Hypergeometric function; Mittag-Leffler function; Pearson diffusion; Spectral representation; Transition density; Whittaker function; TIME RANDOM-WALKS; STATISTICAL-INFERENCE; ANOMALOUS DIFFUSION;
D O I
10.1016/j.spa.2017.03.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define heavy-tailed fractional reciprocal gamma and Fisher Snedecor diffusions by a non-Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in applications. The corresponding fractional reciprocal gamma and Fisher Snedecor diffusions are governed by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal gamma and Fisher Snedecor diffusions and strong solutions of the associated Cauchy problems for the fractional backward Kolmogorov equation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3512 / 3535
页数:24
相关论文
共 50 条
  • [1] Approximation of heavy-tailed fractional Pearson diffusions in Skorokhod topology
    Leonenko, N. N.
    Papic, I.
    Sikorskii, A.
    Suvak, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [2] On Spectral Analysis of Heavy-Tailed Kolmogorov - Pearson Diffusions
    Avram, F.
    Leonenko, N. N.
    Suvak, N.
    MARKOV PROCESSES AND RELATED FIELDS, 2013, 19 (02) : 249 - 298
  • [3] Fractional Pearson diffusions
    Leonenko, Nikolai N.
    Meerschaert, Mark M.
    Sikorskii, Alla
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (02) : 532 - 546
  • [4] Mean-Square Analysis of Discretized Itó Diffusions for Heavy-tailed Sampling
    He, Ye
    Farghly, Tyler
    Balasubramanian, Krishnakumar
    Erdogdu, Murat A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 44
  • [5] ON CONVERGENCE OF 1D MARKOV DIFFUSIONS TO HEAVY-TAILED INVARIANT DENSITY
    Manita, O. A.
    Veretennikov, A. Yu
    MOSCOW MATHEMATICAL JOURNAL, 2019, 19 (01) : 89 - 106
  • [6] Correlation structure of fractional Pearson diffusions
    Leonenko, Nikolai N.
    Meerschaert, Mark M.
    Sikorskii, Alla
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 737 - 745
  • [7] Heavy-tailed densities
    Rojo, Javier
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (01): : 30 - 40
  • [8] Minimum of heavy-tailed random variables is not heavy tailed
    Leipus, Remigijus
    Siaulys, Jonas
    Konstantinides, Dimitrios
    AIMS MATHEMATICS, 2023, 8 (06): : 13066 - 13072
  • [9] Heavy-Tailed Density Estimation
    Tokdar, Surya T.
    Jiang, Sheng
    Cunningham, Erika L.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 163 - 175
  • [10] On aggregation for heavy-tailed classes
    Shahar Mendelson
    Probability Theory and Related Fields, 2017, 168 : 641 - 674