Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes

被引:55
作者
Nam, Dae-Hyun [1 ]
Kim, Ji Woo [2 ,4 ]
Lee, Ji-Hoon [1 ]
Lee, So-Yeon [1 ]
Shin, Hae-A-Seul [1 ]
Lee, Se-Hee [2 ]
Joo, Young-Chang [1 ,3 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[2] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[3] Seoul Natl Univ, RIAM, Seoul 151742, South Korea
[4] LG Chem Ltd, Battery R&D Div, Taejon 305738, South Korea
基金
美国国家科学基金会;
关键词
AMORPHOUS-CARBON; POLYACRYLONITRILE FIBERS; MECHANISM; TIN; STABILIZATION; NANOPARTICLES; EVOLUTION; ADSORPTION; DEPOSITION; ISOTHERMS;
D O I
10.1039/c5ta00884k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Volumetric expansion of active materials during lithium (Li) insertion is a critical drawback of Li-alloy anodes and a major bottleneck for their wide adoption in rechargeable batteries. Here, we report on a novel fabrication method of a tin (Sn) fully embedded one-dimensional (1D) carbon (C) matrix which results in minimal volumetric expansion. The 1D C matrix contributes to the buffer role and electron conduction path. This optimized Sn/C structure is enabled by confining the Sn nucleation site and minimizing the outward Sn diffusion originating from stress relaxation. The difference of thermal expansion coefficient between Sn and C derives the stress. The porosity of C nanofibers is a key parameter to modulate the Sn size and dispersion. It is controlled by stabilization and gas-solid reactions between CO (g), CO2 (g), and C nanofibers. The calcination under an Ar environment, which induced the lowest surface area and total pore volume (10.46 m(2) g(-1) and 0.0217 cm(3) g(-1)), creates an ideal structure of 15 nm sized uniform Sn nanoparticle embedded C nanofibers. It displays a superior anode performance in all-solid-state Li-ion batteries with a capacity of 762 mA h g(-1) and coulombic efficiency greater than 99.5% over 50 cycles. Our scheme provides a fundamental impact on anode materials of Li-ion batteries.
引用
收藏
页码:11021 / 11030
页数:10
相关论文
共 48 条
[11]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[12]  
Gaskell D. R., 2008, Introduction to the Thermodynamics of Materials
[13]   Controlled Positioning of Large Interfacial Nanocavities via Stress-Engineered Void Localization [J].
Gueder, Firat ;
Yang, Yang ;
Goetze, Silvana ;
Berger, Andreas ;
Ramgir, Niranjan ;
Hesse, Dietrich ;
Zacharias, Margit .
SMALL, 2010, 6 (15) :1603-1607
[14]   Aerosol assisted synthesis of hierarchical tin-carbon composites and their application as lithium battery anode materials [J].
Guo, Juchen ;
Yang, Zichao ;
Archer, Lynden A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (31) :8710-8715
[15]   Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries [J].
Han, Xiaogang ;
Liu, Yang ;
Jia, Zheng ;
Chen, Yu-Chen ;
Wan, Jiayu ;
Weadock, Nicholas ;
Gaskell, Karen J. ;
Li, Teng ;
Hu, Liangbing .
NANO LETTERS, 2014, 14 (01) :139-147
[16]  
Hayashi A, 2001, J AM CERAM SOC, V84, P477, DOI 10.1111/j.1151-2916.2001.tb00685.x
[17]   Conduction mechanism in molybdenum-containing diamond-like carbon deposited using electron cyclotron resonance chemical vapor deposition [J].
Huang, QF ;
Yoon, SF ;
Rusli ;
Yang, H ;
Gan, B ;
Chew, K ;
Ahn, J .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (07) :4191-4195
[18]   Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J].
Ji, Liwen ;
Lin, Zhan ;
Alcoutlabi, Mataz ;
Zhang, Xiangwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2682-2699
[19]   Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries [J].
Ji, Liwen ;
Zhang, Xiangwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (01) :124-129
[20]   A Bendable Li-Ion Battery with a Nano-Hairy Electrode: Direct Integration Scheme on the Polymer Substrate [J].
Jung, Min-Suk ;
Seo, Jong-Hyun ;
Moon, Myoung-Woon ;
Choi, Jang Wook ;
Joo, Young-Chang ;
Choi, In-Suk .
ADVANCED ENERGY MATERIALS, 2015, 5 (01)