GLOBAL EXISTENCE AND BOUNDEDNESS FOR CHEMOTAXIS-NAVIER-STOKES SYSTEMS WITH POSITION-DEPENDENT SENSITIVITY IN 2D BOUNDED DOMAINS

被引:69
作者
Ishida, Sachiko [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
关键词
Degenerate diffusion; global existence; chemotaxis; Navier-Stokes; KELLER-SEGEL SYSTEM; PARABOLIC-PARABOLIC TYPE; TIME BLOW-UP; FLUID MODEL; NONLINEAR DIFFUSION; EQUATIONS; FINITE;
D O I
10.3934/dcds.2015.35.3463
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with degenerate chemotaxis-Navier-Stokes systems with position-dependent sensitivity on a two dimensional bounded domain. It is known that in the case without a position-dependent sensitivity function, Tao-Winkler (2012) constructed a globally bounded weak solution of a chemotaxis-Stokes system with any porous medium diffusion, and Winkler (2012, 2014) succeeded in proving global existence and stabilization of classical solutions to a chemotaxis-Navier-Stokes system with linear diffusion. The present work shows global existence and boundedness of weak solutions to a chemotaxis-Navier-Stokes system with position-dependent sensitivity for any porous medium diffusion.
引用
收藏
页码:3463 / 3482
页数:20
相关论文
共 35 条
  • [1] [Anonymous], 1997, INFINITE DIMENSIONAL
  • [2] [Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
  • [3] [Anonymous], 1968, TRANSLATIONS MATH MO
  • [4] Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation
    Cao, Xinru
    Ishida, Sachiko
    [J]. NONLINEARITY, 2014, 27 (08) : 1899 - 1913
  • [5] Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) : 1205 - 1235
  • [6] Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach
    Chertock, A.
    Fellner, K.
    Kurganov, A.
    Lorz, A.
    Markowich, P. A.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 694 : 155 - 190
  • [7] CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR
    Di Francesco, Marco
    Lorz, Alexander
    Markowich, Peter A.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1437 - 1453
  • [8] A Note on Global Existence for the Chemotaxis-Stokes Model with Nonlinear Diffusion
    Duan, Renjun
    Xiang, Zhaoyin
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (07) : 1833 - 1852
  • [9] Global Solutions to the Coupled Chemotaxis-Fluid Equations
    Duan, Renjun
    Lorz, Alexander
    Markowich, Peter
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) : 1635 - 1673
  • [10] Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633