Influence of structure of grain boundaries and size distribution of grains on the yield strength at quasistatic and dynamical loading

被引:14
作者
Borodin, Elijah N. [1 ,2 ,3 ]
Mayer, Alexander E. [1 ,4 ]
机构
[1] Chelyabinsk State Univ, Bratyev Kashirinykh Str 129, Chelyabinsk 454001, Russia
[2] Ural Fed Univ, Lenin Ave 51, Ekaterinburg 620083, Russia
[3] RAS, Inst Problems Mech Engn, VO, Bolshoj Pr 61, St Petersburg 199178, Russia
[4] South Ural State Univ, Lenin Ave 76, Chelyabinsk 454080, Russia
关键词
grain boundary sliding; inverse Hall-Petch relation; high strain rates; grain size distribution; grain boundary viscosity; nanostructured metals; PLASTIC-DEFORMATION; NANOCRYSTALLINE MATERIALS; ATOMISTIC SIMULATION; STRESS; METALS; COPPER; DEPENDENCE; MODEL; RELAXATION; FRACTURE;
D O I
10.1088/2053-1591/aa8514
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dependences of the yield strength of metals on the grain size and the dispersion of the grain size are discussed for quasistatic and dynamic conditions of loading. In these two cases, the size distribution of grains influences differently on the slope of the Hall-Petch curve. The presence of wide size distribution of grains shifts the maximal yield strength to smaller grains, which can obstruct an observation of the inverse Hall-Petch effect. According to our analyses, the role of the grain boundary structure is significant both at low strain rate in the coarse-grained materials and at high strain rate in the fine-grained materials.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Strength of nanostructures [J].
Andrievski, R. A. ;
Glezer, A. M. .
PHYSICS-USPEKHI, 2009, 52 (04) :315-334
[2]  
[Anonymous], 2013, GRAIN BOUNDARIES THE, DOI DOI 10.1007/978-94-007-4969-6
[3]  
[Anonymous], 2009, Theory of Elasticity
[4]   Micro-macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials [J].
Berbenni, S. ;
Favier, V. ;
Berveiller, M. .
COMPUTATIONAL MATERIALS SCIENCE, 2007, 39 (01) :96-105
[5]   Impact of the grain size distribution on the yield stress of heterogeneous materials [J].
Berbenni, S. ;
Favier, V. ;
Berveiller, M. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2007, 23 (01) :114-142
[6]   Maximum Yield Strength under Quasi-Static and High-Rate Plastic Deformation of Metals [J].
Borodin, E. N. ;
Mayer, A. E. ;
Petrov, Yu. V. ;
Gruzdkov, A. .
PHYSICS OF THE SOLID STATE, 2014, 56 (12) :2470-2479
[7]   Yield strength of nanocrystalline materials under high-rate plastic deformation [J].
Borodin, E. N. ;
Mayer, A. E. .
PHYSICS OF THE SOLID STATE, 2012, 54 (04) :808-815
[8]   A simple mechanical model for grain boundary sliding in nanocrystalline metals [J].
Borodin, E. N. ;
Mayer, A. E. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 532 :245-248
[9]   Plastic deformation with reversible peak broadening in nanocrystalline nickel [J].
Budrovic, Z ;
Van Swygenhoven, H ;
Derlet, PM ;
Van Petegem, S ;
Schmitt, B .
SCIENCE, 2004, 304 (5668) :273-276
[10]   SUPERPLASTICITY IN ADVANCED MATERIALS [J].
CHOKSHI, AH ;
MUKHERJEE, AK ;
LANGDON, TG .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1993, 10 (06) :237-274