Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points

被引:45
作者
Li, Wei-Xi [1 ,2 ]
Yang, Tong [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
[3] Jinan Univ, Dept Math, Guangzhou, Peoples R China
[4] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
Prandtl boundary layer; non-degenerate critical points; Gevrey class; NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; ILL-POSEDNESS; HALF-SPACE; SYSTEM;
D O I
10.4171/JEMS/931
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness of the Prandtl system without monotonicity and analyticity assumption. Precisely, for any index sigma is an element of invertef right perpendicular3/2, 2inverted left perpendicular, we obtain the local in time well-posedness in the space of Gevrey class G(sigma) in the tangential variable and Sobolev class in the normal variable so that the monotonicity condition on the tangential velocity is not needed to overcome the loss of tangential derivative. This answers an open question raised by D. Gerard-Varet and N. Masmoudi [Ann. Sci. Ecole Norm. Sup. (4) 48 (2015), 1273-1325], who solved the case sigma = 7/4.
引用
收藏
页码:717 / 775
页数:59
相关论文
共 22 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
ASANO K, 1988, SURIKAISEKIKENKYUSHO, V656, P105
[3]   Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow [J].
Chen, Dongxiang ;
Wang, Yuxi ;
Zhang, Zhifei .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04) :1119-1142
[4]   GEVREY STABILITY OF PRANDTL EXPANSIONS FOR 2-DIMENSIONAL NAVIER-STOKES FLOWS [J].
Gerard-Varet, David ;
Maekawa, Yasunori ;
Masmoudi, Nader .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (13) :2531-2631
[5]  
Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273
[6]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[7]  
Guo Y., 2017, Ann. PDE, V3, P58, DOI DOI 10.1007/S40818-016-0020-6
[8]   Almost Global Existence for the Prandtl Boundary Layer Equations [J].
Ignatova, Mihaela ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) :809-848
[9]  
Kukavica I, 2013, COMMUN MATH SCI, V11, P269
[10]   GEVREY CLASS SMOOTHING EFFECT FOR THE PRANDTL EQUATION [J].
Li, Wei-Xi ;
Wu, Di ;
Xu, Chao-Jiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :1672-1726