Research Progress on Terahertz Quantum-Well Photodetector and Its Application

被引:9
作者
Shao, Dixiang [1 ]
Fu, Zhanglong [1 ]
Tan, Zhiyong [1 ,2 ]
Wang, Chang [1 ,2 ]
Qiu, Fucheng [1 ,2 ]
Gu, Liangliang [3 ]
Wan, Wenjian [1 ]
Cao, Juncheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Key Lab Terahertz Solid State Technol, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
[3] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
terahertz detection; terahertz imaging; terahertz communication; terahertz; terahertz quantum-well photodetector;
D O I
10.3389/fphy.2021.751018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Compared with other typical terahertz (THz) detectors, the quantum-well photodetector (QWP) has the advantages of high detection sensitivity, fast response, mature fabrication, small size, and easy integration. Therefore, it is suitable for high-speed detection and imaging applications at the THz band. Researchers, both domestic and overseas, have systematically studied material design and device performance of the THz QWP. The design of the device is such that the peak frequency error is within 8%, the maximum peak responsibility is 5.5 A/W, the fastest response speed is 6.2 GHz, the best noise equivalent power is similar to 10(-13) W/Hz(0.5), and the spectrum range is 2.5-6.5 THz. In this article, firstly the basic principles and theoretical calculations of the THz QWP are described, and then the research progress of the THz QWP in our research group at imaging and communication is reviewed, which looks forward to its future development.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] Scanning the issue: T-ray imaging, sensing, and retection
    Abbott, Derek
    Zhang, Xi-Cheng
    [J]. PROCEEDINGS OF THE IEEE, 2007, 95 (08) : 1509 - 1513
  • [2] Cao JC., 2012, SEMICONDUCTOR TERAHE, P1
  • [3] Cao Jun-Cheng, 2006, Wuli, V35, P953
  • [4] Imaging with terahertz radiation
    Chan, Wai Lam
    Deibel, Jason
    Mittleman, Daniel M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) : 1325 - 1379
  • [5] Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector
    Chen, Z.
    Tan, Z. Y.
    Han, Y. J.
    Zhang, R.
    Guo, X. G.
    Li, H.
    Cao, J. C.
    Liu, H. C.
    [J]. ELECTRONICS LETTERS, 2011, 47 (17) : 1002 - U89
  • [6] Real-time video signal transmission over a terahertz communication link
    Chen, Zhen
    Gu, Li
    Tan, Zhiyong
    Wang, Chang
    Cao, Juncheng
    [J]. CHINESE OPTICS LETTERS, 2013, 11 (11)
  • [7] Channel characterization at 120 GHz for future indoor communication systems
    Chen Zhen
    Cao Jun-Cheng
    [J]. CHINESE PHYSICS B, 2013, 22 (05)
  • [8] Terahertz imaging using quantum cascade lasers-a review of systems and applications
    Dean, P.
    Valavanis, A.
    Keeley, J.
    Bertling, K.
    Lim, Y. L.
    Alhathlool, R.
    Burnett, A. D.
    Li, L. H.
    Khanna, S. P.
    Indjin, D.
    Taimre, T.
    Rakic, A. D.
    Linfield, E. H.
    Davies, A. G.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (37)
  • [9] Terahertz imaging system based on a backward-wave oscillator
    Dobroiu, A
    Yamashita, M
    Ohshima, YN
    Morita, Y
    Otani, C
    Kawase, K
    [J]. APPLIED OPTICS, 2004, 43 (30) : 5637 - 5646
  • [10] Materials for terahertz science and technology
    Ferguson, B
    Zhang, XC
    [J]. NATURE MATERIALS, 2002, 1 (01) : 26 - 33