Efficient passivation of n-type and p-type silicon surface defects by hydrogen sulfide gas reaction

被引:4
|
作者
Das, U. K. [1 ]
Theisen, R. [1 ]
Hua, A. [2 ]
Upadhyaya, A. [3 ]
Lam, I [1 ]
Mouri, T. K. [1 ]
Jiang, N. [2 ]
Hauschild, D. [2 ,4 ,5 ]
Weinhardt, L. [2 ,4 ,5 ]
Yang, W. [6 ]
Rohatgi, A. [3 ]
Heske, C. [2 ,4 ,5 ]
机构
[1] Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA
[2] Univ Nevada Las Vegas, Dept Chem & Biochem, Las Vegas, NV USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA USA
[4] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, Karlsruhe, Germany
[5] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, Karlsruhe, Germany
[6] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
关键词
silicon; surface passivation; hydrogen sulfide reaction; x-ray photoelectron spectroscopy; x-ray emission spectroscopy; SOLAR-CELLS; SULFUR; SI; SPECTROSCOPY; ADSORPTION; H2S;
D O I
10.1088/1361-648X/ac1ec8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
An efficient surface defect passivation is observed by reacting clean Si in a dilute hydrogen sulfide-argon gas mixture (<5% H2S in Ar) for both n-type and p-type Si wafers with planar and textured surfaces. Surface recombination velocities of 1.5 and 8 cm s(-1) are achieved on n-type and p-type Si wafers, respectively, at an optimum reaction temperature of 550 degrees C that are comparable to the best surface passivation quality used in high efficiency Si solar cells. Surface chemical analysis using x-ray photoelectron spectroscopy shows that sulfur is primarily bonded in a sulfide environment, and synchrotron-based soft x-ray emission spectroscopy of the adsorbed sulfur atoms suggests the formation of S-Si bonds. The sulfur surface passivation layer is unstable in air, attributed to surface oxide formation and a simultaneous decrease of sulfide bonds. However, the passivation can be stabilized by a low-temperature (300 degrees C) deposited amorphous silicon nitride (a-Si:N- X :H) capping layer.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] PASSIVATION OF INTRAGRAIN DEFECTS BY COPPER DIFFUSION IN P-TYPE POLYCRYSTALLINE SILICON
    ZEHAF, M
    MATHIAN, G
    SINGAL, CM
    MARTINUZZI, S
    REVUE DE PHYSIQUE APPLIQUEE, 1983, 18 (09): : 557 - 560
  • [32] P-TYPE SURFACE-LAYERS ON N-TYPE SILICON HEAT-CLEANED IN UHV
    MOTTRAM, JD
    THANAILAKIS, A
    NORTHROP, DC
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1975, 8 (11) : 1316 - 1320
  • [33] The structure and optical properties of n-type and p-type porous silicon
    Hong, KP
    Lee, CM
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S671 - S675
  • [34] CHARACTERISTICS OF SCHOTTKY BARRIERS ON N-TYPE AND P-TYPE IMPLANTED SILICON
    WILSON, RG
    JAMBA, DM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1976, 123 (08) : C275 - C275
  • [35] TEMPERATURE-COEFFICIENT OF RESISTANCE FOR P-TYPE AND N-TYPE SILICON
    NORTON, P
    BRANDT, J
    SOLID-STATE ELECTRONICS, 1978, 21 (07) : 969 - 974
  • [36] DIFFUSION OF BORON IN HEAVILY DOPED N-TYPE AND P-TYPE SILICON
    WILLOUGHBY, AFW
    EVANS, AGR
    CHAMP, P
    YALLUP, KJ
    GODFREY, DJ
    DOWSETT, MG
    JOURNAL OF APPLIED PHYSICS, 1986, 59 (07) : 2392 - 2397
  • [37] Flicker Noise in N-type and P-type Silicon Nanowire Transistors
    Yang, Seungwon
    Son, Younghwan
    Suk, Sung Dae
    Kim, Dong-Won
    Park, Donggun
    Oh, Kyungseok
    Shin, Hyungcheol
    2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 43 - +
  • [38] REDUCTION OF ANTHRAQUINONE DERIVATIVES AT N-TYPE AND P-TYPE SILICON ELECTRODES
    KEITA, B
    KAWENOKI, I
    KOSSANYI, J
    NADJO, L
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1983, 145 (02): : 311 - 323
  • [39] POSITRON LIFETIME SPECTROSCOPY OF N-TYPE AND P-TYPE POROUS SILICON
    DANNEFAER, S
    BRETAGNON, T
    FOUCARAN, A
    TALIERCIO, T
    KERR, D
    THIN SOLID FILMS, 1995, 255 (1-2) : 171 - 173
  • [40] PROPERTIES OF IRON SILICIDE CONTACTS TO N-TYPE AND P-TYPE SILICON
    ERLESAND, U
    OSTLING, M
    PHYSICA SCRIPTA, 1994, 54 : 300 - 304