Singularity formation for the incompressible Hall-MHD equations without resistivity

被引:72
作者
Chae, Dongho [1 ]
Weng, Shangkun [2 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
[2] Seoul Natl Univ, PDE & Funct Anal Res Ctr, Seoul 151747, South Korea
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2016年 / 33卷 / 04期
关键词
Inviscid/viscous Hall-MHD without resistivity; Singularity formation; Axisymmetric data; NAVIER-STOKES EQUATIONS; MAGNETOHYDRODYNAMIC EQUATIONS; GLOBAL EXISTENCE; WELL-POSEDNESS; WEAK SOLUTIONS; REGULARITY; VORTICITY; SYSTEM; WAVES; FLOWS;
D O I
10.1016/j.anihpc.2015.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that the incompressible Hall-MHD system without resistivity is not globally in time well-posed in any Sobolev space H-m(R-3) for any m > 7/2. Namely, either the system is locally ill-posed in H-m (R-3), or it is locally well-posed, but there exists an initial data in H-m (R-3), for which the H-m (R-3) norm of solution blows-up in finite time if m > 7/2. In the latter case we choose an axisymmetric initial data u(0) (x) = u(0r) (r, z)e(r) + b(0z) (r, z)e(z) and B-0(x) = b(0 theta) (r, z,)e(theta), and reduce the system to the axisymmetric setting. If the convection term survives sufficiently long time, then the Hall term generates the singularity on the axis of symmetry and we have lim sup(t -> t*) sup(z is an element of R) vertical bar partial derivative(z)partial derivative(r)b(theta) (r = 0, z)vertical bar = infinity for some t(*) > 0, which will also induce a singularity in the velocity field. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1009 / 1022
页数:14
相关论文
共 25 条
  • [1] KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM
    Acheritogaray, Marion
    Degond, Pierre
    Frouvelle, Amic
    Liu, Jian-Guo
    [J]. KINETIC AND RELATED MODELS, 2011, 4 (04) : 901 - 918
  • [2] On hydromagnetic waves in atmospheres with application to the Sun
    Campos, LMBC
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1998, 10 (1-4) : 37 - 70
  • [3] On the regularity of the axisymmetric solutions of the Navier-Stokes equations
    Chae, D
    Lee, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) : 645 - 671
  • [4] Well-posedness for Hall-magnetohydrodynamics
    Chae, Dongho
    Degond, Pierre
    Liu, Jian-Guo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03): : 555 - 565
  • [5] the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics
    Chae, Dongho
    Lee, Jihoon
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) : 3835 - 3858
  • [6] On the temporal decay for the Hall-magnetohydrodynamic equations
    Chae, Dongho
    Schonbek, Maria
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 3971 - 3982
  • [7] Danchin R, 2007, RUSS MATH SURV+, V62, P475, DOI [10.1070/RM2007v062n03ABEH004412, 10.4213/rm6761]
  • [8] Axisymmetric flows in Hall-MHD: A tendency towards finite-time singularity formation
    Dreher, J
    Ruban, V
    Grauer, R
    [J]. PHYSICA SCRIPTA, 2005, 72 (06) : 451 - 455
  • [9] DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
  • [10] Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations
    Fan, Jishan
    Huang, Shuxiang
    Nakamura, Gen
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 963 - 967