Scattering theory for the Schrodinger equation with repulsive potential

被引:22
作者
Bony, JF
Carles, R
Häfner, D
Michel, L
机构
[1] Univ Bordeaux 1, CNRS, UMR 5466, MAB, F-33405 Talence, France
[2] Univ Rennes 1, CNRS, UMR 6625, IRMAR, F-35042 Rennes, France
[3] Univ Paris 13, Dept Math, Inst Gallilee, F-93430 Villetaneuse, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2005年 / 84卷 / 05期
关键词
scattering theory; Schrodinger equation; harmonic potential; Mourre estimate;
D O I
10.1016/j.matpur.2004.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the scattering theory for the Schrodinger equation with -Delta - vertical bar x vertical bar(alpha) as a reference Hamiltonian, for 0 < a <= 2, in any space dimension. We prove that, when this Hamiltonian is perturbed by a potential, the usual short range/long range condition is weakened: the limiting decay for the potential depends on the value of alpha, and is related to the growth of classical trajectories in the unperturbed case. The existence of wave operators and their asymptotic completeness are established thanks to Mourre estimates relying on new conjugate operators. We construct the asymptotic velocity and describe its spectrum. Some results are generalized to the case where - vertical bar x vertical bar(alpha) is replaced by a general second order polynomial. (c) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:509 / 579
页数:71
相关论文
共 33 条
[1]  
Amrein W. O., 1996, Progress in Mathematics, V135
[2]  
[Anonymous], MATH REPORTS
[3]  
[Anonymous], SPECTRAL THEORY DIFF
[4]   SPECTRAL AND SCATTERING THEORY OF SCHRODINGER OPERATORS RELATED TO STARK EFFECT [J].
AVRON, JE ;
HERBST, IW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 52 (03) :239-254
[6]   UNITARY EQUIVALENCE AND SCATTERING-THEORY FOR STARK-LIKE HAMILTONIANS [J].
BENARTZI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) :951-964
[7]   Scattering for the Schrodinger equation with a repulsive potential. [J].
Bony, JF ;
Carles, W ;
Häfner, D ;
Michel, L .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (06) :453-456
[8]   Nonlinear Schrodinger equations with repulsive harmonic potential and applications [J].
Carles, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :823-843
[9]  
Cycon H.L., 1987, TEXTS MONOGRAPHS PHY
[10]   LOCALLY SMOOTH OPERATORS AND THE LIMITING ABSORPTION PRINCIPLE FOR N-BODY HAMILTONIANS [J].
DEMONVELBERTHIER, AB ;
GEORGESCU, V ;
MANTOIU, M .
REVIEWS IN MATHEMATICAL PHYSICS, 1993, 5 (01) :105-189