Implementing evolutionary optimization on actual quantum processors

被引:22
作者
Acampora, Giovanni [1 ,2 ]
Vitiello, Autilia [1 ]
机构
[1] Univ Naples Federico II, Dept Phys Ettore Pancini, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
Genetic algorithms; Quantum computing; Quantum evolutionary computation; ALGORITHM;
D O I
10.1016/j.ins.2021.06.049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a new evolutionary algorithm with the support of an actual quantum processor, a computing device which uses phenomena from quantum mechanics to enable a considerable speed-up in computation. In particular, the proposed approach uses quantum superposition and entanglement to implement quantum evolutionary concepts such as quantum chromosome, entangled crossover, rotation mutation, and quantum elitism, to efficiently perform genetic evolution on quantum devices, and converge towards proper sub-optimal solutions of a given optimization problem. The proposed quantum genetic algorithm has been implemented by using a hybrid hardware architecture, where classical processors interact with the family of quantum processors provided by the IBM Q Experience (R) initiative. As shown in the experimental section, the proposed quantum genetic algorithm's performance highlights that the synergy between quantum and evolutionary computation results in a new and promising bio-inspired optimization strategy. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:542 / 562
页数:21
相关论文
共 54 条
  • [2] A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
    Ali, MM
    Khompatraporn, C
    Zabinsky, ZB
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (04) : 635 - 672
  • [3] Quantum Artificial Life in an IBM Quantum Computer
    Alvarez-Rodriguez, U.
    Sanz, M.
    Lamata, L.
    Solano, E.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [4] [Anonymous], 2006, 2006 IEEE INT C EV C
  • [5] [Anonymous], 2015, PLOS ONE, DOI 10.1109/IJCNN.2015.7280835
  • [6] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [7] Parallelizing quantum circuits
    Broadbent, Anne
    Kashefi, Elham
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (26) : 2489 - 2510
  • [8] Universal discriminative quantum neural networks
    Chen, H.
    Wossnig, L.
    Severini, S.
    Neven, H.
    Mohseni, M.
    [J]. QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [9] Cristea V, 2000, IEEE C EVOL COMPUTAT, P431, DOI 10.1109/CEC.2000.870328
  • [10] Evolutionary Computation: A Unified Approach
    De Jong, Kenneth
    [J]. PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 185 - 199