Hydrogels to model 3D in vitro microenvironment of tumor vascularization

被引:116
作者
Song, Hyun-Ho Greco
Park, Kyung Min
Gerecht, Sharon [1 ]
机构
[1] Johns Hopkins Phys Sci Oncol Ctr, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
关键词
Angiogenesis; Hydrogel; Tumor modeling; Three-dimensional cell culture; ECM remodeling; EXTRACELLULAR-MATRIX; ANTIANGIOGENIC THERAPY; ENDOTHELIAL-CELLS; PROSTATE-CANCER; MICROVASCULAR NETWORKS; ENGINEERING TUMORS; ANTITUMOR-ACTIVITY; LYMPHATIC VESSELS; CULTURE MODELS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2014.06.002
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A growing number of failing clinical trials for cancer therapy are substantiating the need to upgrade the current practice in culturing tumor cells and modeling tumor angiogenesis in vitro. Many attempts have been made to engineer vasculature in vitro by utilizing hydrogels, but the application of these tools in simulating in vivo tumor angiogenesis is still very new. In this review, we explore current use of hydrogels and their design parameters to engineer vasculogenesis and angiogenesis and to evaluate the angiogenic capability of cancerous cells and tissues. By coupling these hydrogels with other technologies such as lithography and three-dimensional printing, one can create an advanced microvessel model as microfluidic channels to more accurately capture the native angiogenesis process. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 144 条
[1]   HMEC-1 - ESTABLISHMENT OF AN IMMORTALIZED HUMAN MICROVASCULAR ENDOTHELIAL-CELL LINE [J].
ADES, EW ;
CANDAL, FJ ;
SWERLICK, RA ;
GEORGE, VG ;
SUMMERS, S ;
BOSSE, DC ;
LAWLEY, TJ .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1992, 99 (06) :683-690
[2]   Interaction of tumor cells and lymphatic vessels in cancer progression [J].
Alitalo, A. ;
Detmar, M. .
ONCOGENE, 2012, 31 (42) :4499-4508
[3]   Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling [J].
Apopa, Patrick L. ;
Qian, Yong ;
Shao, Rong ;
Guo, Nancy Lan ;
Schwegler-Berry, Diane ;
Pacurari, Maricica ;
Porter, Dale ;
Shi, Xianglin ;
Vallyathan, Val ;
Castranova, Vincent ;
Flynn, Daniel C. .
PARTICLE AND FIBRE TOXICOLOGY, 2009, 6
[4]   In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract [J].
Arnaoutova, Irina ;
Kleinman, Hynda K. .
NATURE PROTOCOLS, 2010, 5 (04) :628-635
[5]   VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells [J].
Asahara, T ;
Takahashi, T ;
Masuda, H ;
Kalka, C ;
Chen, DH ;
Iwaguro, H ;
Inai, Y ;
Silver, M ;
Isner, JM .
EMBO JOURNAL, 1999, 18 (14) :3964-3972
[6]   Directed 3D cell alignment and elongation in microengineered hydrogels [J].
Aubin, Hug ;
Nichol, Jason W. ;
Hutson, Che B. ;
Bae, Hojae ;
Sieminski, Alisha L. ;
Cropek, Donald M. ;
Akhyari, Payam ;
Khademhosseini, Ali .
BIOMATERIALS, 2010, 31 (27) :6941-6951
[7]   Angiogenesis assays: A critical overview [J].
Auerbach, R ;
Lewis, R ;
Shinners, B ;
Kubai, L ;
Akhtar, N .
CLINICAL CHEMISTRY, 2003, 49 (01) :32-40
[8]   Use of the mouse aortic ring assay to study angiogenesis [J].
Baker, Marianne ;
Robinson, Stephen D. ;
Lechertier, Tanguy ;
Barber, Paul R. ;
Tavora, Bernardo ;
D'Amico, Gabriela ;
Jones, Dylan T. ;
Vojnovic, Boris ;
Hodivala-Dilke, Kairbaan .
NATURE PROTOCOLS, 2012, 7 (01) :89-104
[9]   Selective Targeting of Interferon γ to Stromal Fibroblasts and Pericytes as a Novel Therapeutic Approach to Inhibit Angiogenesis and Tumor Growth [J].
Bansal, Ruchi ;
Tomar, Tushar ;
Ostman, Arne ;
Poelstra, Klaas ;
Prakash, Jai .
MOLECULAR CANCER THERAPEUTICS, 2012, 11 (11) :2419-2428
[10]   A Novel In Vitro Model for Microvasculature Reveals Regulation of Circumferential ECM Organization by Curvature [J].
Barreto-Ortiz, Sebastian F. ;
Zhang, Shuming ;
Davenport, Matthew ;
Fradkin, Jamie ;
Ginn, Brian ;
Mao, Hai-Quan ;
Gerecht, Sharon .
PLOS ONE, 2013, 8 (11)