Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning

被引:27
作者
Capobianco, Nicolo [1 ,2 ]
Sibille, Ludovic [3 ]
Chantadisai, Maythinee [4 ,5 ]
Gafita, Andrei [4 ]
Langbein, Thomas [4 ]
Platsch, Guenther [2 ]
Solari, Esteban Lucas [4 ]
Shah, Vijay [3 ]
Spottiswoode, Bruce [3 ]
Eiber, Matthias [4 ]
Weber, Wolfgang A. [4 ]
Navab, Nassir [6 ]
Nekolla, Stephan G. [4 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Siemens Healthcare GmbH, Erlangen, Germany
[3] Siemens Med Solut USA Inc, Knoxville, TN USA
[4] Tech Univ Munich, Sch Med, Dept Nucl Med, Munich, Germany
[5] Chulalongkorn Univ, King Chulalongkorn Mem Hosp, Fac Med, Thai Red Cross Soc, Bangkok, Thailand
[6] Tech Univ Munich, Comp Aided Med Procedures CAMP, Munich, Germany
关键词
Prostate cancer; Staging; PSMA; PET; CT; Deep learning; miTNM; BIOCHEMICAL RECURRENCE; GUIDELINES; PEARLS; EANM;
D O I
10.1007/s00259-021-05473-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose In PSMA-ligand PET/CT imaging, standardized evaluation frameworks and image-derived parameters are increasingly used to support prostate cancer staging. Clinical applicability remains challenging wherever manual measurements of numerous suspected lesions are required. Deep learning methods are promising for automated image analysis, typically requiring extensive expert-annotated image datasets to reach sufficient accuracy. We developed a deep learning method to support image-based staging, investigating the use of training information from two radiotracers. Methods In 173 subjects imaged with Ga-68-PSMA-11 PET/CT, divided into development (121) and test (52) sets, we trained and evaluated a convolutional neural network to both classify sites of elevated tracer uptake as nonsuspicious or suspicious for cancer and assign them an anatomical location. We evaluated training strategies to leverage information from a larger dataset of F-18-FDG PET/CT images and expert annotations, including transfer learning and combined training encoding the tracer type as input to the network. We assessed the agreement between the N and M stage assigned based on the network annotations and expert annotations, according to the PROMISE miTNM framework. Results In the development set, including F-18-FDG training data improved classification performance in four-fold cross validation. In the test set, compared to expert assessment, training with F-18-FDG data and the development set yielded 80.4% average precision [confidence interval (CI): 71.1-87.8] for identification of suspicious uptake sites, 77% (CI: 70.0-83.4) accuracy for anatomical location classification of suspicious findings, 81% agreement for identification of regional lymph node involvement, and 77% agreement for identification of metastatic stage. Conclusion The evaluated algorithm showed good agreement with expert assessment for identification and anatomical location classification of suspicious uptake sites in whole-body Ga-68-PSMA-11 PET/CT. With restricted PSMA-ligand data available, the use of training examples from a different radiotracer improved performance. The investigated methods are promising for enabling efficient assessment of cancer stage and tumor burden.
引用
收藏
页码:517 / 526
页数:10
相关论文
共 36 条
[1]   Time to Prepare for Risk Adaptation in Lymphoma by Standardizing Measurement of Metabolic Tumor Burden [J].
Barrington, Sally E. ;
Meignan, Michel .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (08) :1096-1102
[2]   Exploring New Multimodal Quantitative Imaging Indices for the Assessment of Osseous Tumor Burden in Prostate Cancer Using 68Ga-PSMA PET/CT [J].
Bieth, Marie ;
Kroenke, Markus ;
Tauber, Robert ;
Dahlbender, Marielena ;
Retz, Margitta ;
Nekolla, Stephan G. ;
Menze, Bjoern ;
Maurer, Tobias ;
Eiber, Matthias ;
Schwaiger, Markus .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (10) :1632-1637
[3]   Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. [J].
Blanc-Durand, Paul ;
Jegou, Simon ;
Kanoun, Salim ;
Berriolo-Riedinger, Alina ;
Bodet-Milin, Caroline ;
Kraeber-Bodere, Francoise ;
Carlier, Thomas ;
Le Gouill, Steven ;
Casasnovas, Rene-Olivier ;
Meignan, Michel ;
Itti, Emmanuel .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (05) :1362-1370
[4]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[5]   Validation of a Multifocal Segmentation Method for Measuring Metabolic Tumor Volume in Hodgkin Lymphoma [J].
Camacho, Mariana R. ;
Etchebehere, Elba ;
Tardelli, Natalia ;
Delamain, Marcia T. ;
Vercosa, Aline F. A. ;
Takahashi, Maria E. S. ;
Brunetto, Sergio Q. ;
Metze, Irene G. H. L. ;
Souza, Carmino A. ;
Cerci, Juliano J. ;
Ramos, Celso D. .
JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY, 2020, 48 (01) :30-35
[6]   E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET [J].
Ceci, Francesco ;
Oprea-Lager, Daniela E. ;
Emmett, Louise ;
Adam, Judit A. ;
Bomanji, Jamshed ;
Czernin, Johannes ;
Eiber, Matthias ;
Haberkorn, Uwe ;
Hofman, Michael S. ;
Hope, Thomas A. ;
Kumar, Rakesh ;
Rowe, Steven P. ;
Schwarzenboeck, Sarah M. ;
Fanti, Stefano ;
Herrmann, Ken .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (05) :1626-1638
[7]   Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand PET/CT [J].
Eiber, Matthias ;
Herrmann, Ken ;
Calais, Jeremie ;
Hadaschik, Boris ;
Giesel, Frederik L. ;
Hartenbach, Markus ;
Hope, Thomas ;
Reiter, Robert ;
Maurer, Tobias ;
Weber, Wolfgang A. ;
Fendler, Wolfgang P. .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (03) :469-478
[8]   68Ga-PSMA PET/MR with multimodality image analysis for primary prostate cancer [J].
Eiber, Matthias ;
Nekolla, Stephan G. ;
Maurer, Tobias ;
Weirich, Gregor ;
Wester, Hans-Juergen ;
Schwaiger, Markus .
ABDOMINAL IMAGING, 2015, 40 (06) :1769-1771
[9]   Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy [J].
Eiber, Matthias ;
Maurer, Tobias ;
Souvatzoglou, Michael ;
Beer, Ambros J. ;
Ruffani, Alexander ;
Haller, Bernhard ;
Graner, Frank-Philipp ;
Kuebler, Hubert ;
Haberhorn, Uwe ;
Eisenhut, Michael ;
Wester, Hans-Juergen ;
Gschwend, Juergen E. ;
Schwaiger, Markus .
JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (05) :668-674
[10]   68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0 [J].
Fendler, Wolfgang P. ;
Eiber, Matthias ;
Beheshti, Mohsen ;
Bomanji, Jamshed ;
Ceci, Francesco ;
Cho, Steven ;
Giesel, Frederik ;
Haberkorn, Uwe ;
Hope, Thomas A. ;
Kopka, Klaus ;
Krause, Bernd J. ;
Mottaghy, Felix M. ;
Schoder, Heiko ;
Sunderland, John ;
Wan, Simon ;
Wester, Hans-Juergen ;
Fanti, Stefano ;
Herrmann, Ken .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (06) :1014-1024