State constrained feedback stabilization

被引:21
作者
Clarke, FH
Stern, RJ
机构
[1] Univ Lyon 1, Inst Desargues, F-69622 Villeurbanne, France
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
关键词
asymptotic controllability; state constraint; semiconcave control Lyapunov function; constraint removal; feedback; robustness;
D O I
10.1137/S036301290240453X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A standard finite dimensional nonlinear control system is considered, along with a state constraint set S and a target set Sigma. It is proven that open loop S-constrained controllability to Sigma implies closed loop S-constrained controllability to the closed delta-neighborhood of Sigma, for any specified delta > 0. When the S-constrained minimum time function to Sigma satisfies a local continuity condition, conclusions on closed loop S-constrained stabilizability ensue. The (necessarily discontinuous) feedback laws in question are implemented in the sample-and-hold sense and possess a robustness property with respect to state measurement errors. The feedback constructions involve the quadratic infimal convolution of a control Lyapunov function with respect to a certain modi. cation of the original dynamics. The modified dynamics in effect provide for constraint removal, while the convolution operation provides a useful semiconcavity property.
引用
收藏
页码:422 / 441
页数:20
相关论文
共 38 条
[1]  
Ancona F., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P445, DOI 10.1051/cocv:1999117
[2]  
[Anonymous], 1994, J MATH SYSTEMS ESTIM
[3]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[4]  
Bacciotti A., 1992, Local Stabilizability of Nonlinear Control Systems
[5]  
Brockett R.W., 1983, Differential Geometric Control Theory, P181
[6]  
CLARKE F, 1989, CBMS NSF REG C SER A, V57
[7]  
Clarke F.H., 1990, CLASSICS APPL MATH, V5
[8]  
Clarke F.H., 1998, GRAD TEXT M, V178
[9]   Feedback stabilization and Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Rifford, L ;
Stern, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :25-48
[10]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407