Knotting matters: orderly molecular entanglements

被引:83
作者
Ashbridge, Zoe [1 ]
Fielden, Stephen D. P. [1 ]
Leigh, David A. [1 ,2 ]
Pirvu, Lucian [1 ]
Schaufelberger, Fredrik [1 ]
Zhang, Liang [1 ,2 ]
机构
[1] Univ Manchester, Dept Chem, Manchester, Lancs, England
[2] East China Normal Univ, Sch Chem & Mol Engn, 3663 N Zhongshan Rd, Shanghai, Peoples R China
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
LANTHANIDE TEMPLATE SYNTHESIS; TREFOIL KNOT; DIRECTED SYNTHESIS; CHEMICAL TOPOLOGY; CRYSTAL-STRUCTURE; ANION-BINDING; SOLOMON LINK; IN-VITRO; COMPLEXES; CATENANES;
D O I
10.1039/d2cs00323f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
引用
收藏
页码:7779 / 7809
页数:32
相关论文
共 186 条
[1]  
Adams C., 1994, KNOT BOOK ELEMENTARY
[2]   Knot tied around an octahedral metal centre [J].
Adams, H ;
Ashworth, E ;
Breault, GA ;
Guo, J ;
Hunter, CA ;
Mayers, PC .
NATURE, 2001, 411 (6839) :763-763
[3]  
Alexander J. W., 1926, Ann. of Math., V28, P562, DOI 10.2307/1968399
[4]  
[Anonymous], About us
[5]   Tying a molecular knot with optical tweezers [J].
Arai, Y ;
Yasuda, R ;
Akashi, K ;
Harada, Y ;
Miyata, H ;
Kinosita, K ;
Itoh, H .
NATURE, 1999, 399 (6735) :446-448
[6]   Synthesis of a D3-symmetric "trefoil" knotted cyclophane [J].
Arias, Karla I. ;
Zysman-Colman, Eli ;
Loren, Jon C. ;
Linden, Anthony ;
Siegel, Jay S. .
CHEMICAL COMMUNICATIONS, 2011, 47 (34) :9588-9590
[7]   Vernier template synthesis of molecular knots [J].
Ashbridge, Zoe ;
Kreidt, Elisabeth ;
Pirvu, Lucian ;
Schaufelberger, Fredrik ;
Stenlid, Joakim Halldin ;
Abild-Pedersen, Frank ;
Leigh, David A. .
SCIENCE, 2022, 375 (6584) :1035-+
[8]   Catalytic "click" rotaxanes:: A substoichiometric metal-template pathway to mechanically interlocked architectures [J].
Aucagne, V ;
Hänni, KD ;
Leigh, DA ;
Lusby, PJ ;
Walker, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2186-2187
[9]   A Chiral Cyclometalated Iridium Star of David [2]Catenane [J].
August, David P. ;
Jaramillo-Garcia, Javier ;
Leigh, David A. ;
Valero, Alberto ;
Vitorica-Yrezabal, Inigo J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (02) :1154-1161
[10]   Self-assembly of a layered two-dimensional molecularly woven fabric [J].
August, David P. ;
Dryfe, Robert A. W. ;
Haigh, Sarah J. ;
Kent, Paige R. C. ;
Leigh, David A. ;
Lemonnier, Jean-Francois ;
Li, Zheling ;
Muryn, Christopher A. ;
Palmer, Leoni I. ;
Song, Yiwei ;
Whitehead, George F. S. ;
Young, Robert J. .
NATURE, 2020, 588 (7838) :429-+